
Challenges of Machine Learning for
Transcriptomics

AI for genomics Bootcamp

Paul Bertin

Mila, Université de Montréal
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Applications of deep learning in genomics.

I Lots of applications
of deep learning in
genomics

I Today focus on
applications to
transcriptomics
and its challenges

Figure taken from A primer on deep learning in genomics
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What are transcriptomics?

I The study of an organism’s transcriptome, the sum of all of
its RNA transcripts

I We will focus on RNA-seq and single cell RNA-seq

Figure taken from
https://www.biocompare.com/Bench-Tips/345311-Single-Cell-Set-Up-Sample-Preparation-Tips/
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Lots of different cell types
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More and more data

Figure: Plot of commercial release dates versus machine outputs per run
are shown. Numbers inside data points denote current read lengths.
Sequencing platforms are color coded.

Figure taken from High-Throughput Sequencing Technologies
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Apply modern machine learning techniques?

Long term goals:

I Individualized medicine

I Better understanding the biology

Today’s objective

Identify and understand the challenges facing machine learning
(ML) and deep learning (DL) techniques when applied to
transcriptomics

Why should you care?

I Be aware of the limitations of usual ML

I Take those limitations into account when you use ML

I Discover fields of research in ML
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How can machine learning help?

I Example of a pipeline to find better cancer treatment using
Machine Learning

I Let us study the limitations associated with each step
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Overview
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Cell lines, a model for tumors

Cell lines as a model

Cell lines are a simplified model
of tumors

I Tumor are complex tissues

I Composed of different cell
types

I Evolving in a living
organism

Figure taken from Biological Pathways Involved in Tumor Angiogenesis and Bevacizumab Based
Anti-Angiogenic Therapy with Special References to Ovarian Cancer
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Why is this an issue for ML?

Train set Test set

Lab experiments Patients
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A refresher on supervised learning

Supervised learning

I Learn to predict target Y given input X

I We model Pθ(x |y) and learn the parameters θ based on pairs
of examples

I Questions: Are there any assumptions on the dataset?
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Let’s have a quiz!

What can Supervised Learning do?

Estimate functions from IID value samples

Replace any domain knowledge

Estimate functions from IID 
samples

Provide explanations for observed 
patterns 

Reliably generalize to other 
domains  
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Machine Learning cannot do everything!

What can Supervised Learning do?

Estimate functions from IID value samples

Replace any domain knowledge

Estimate functions from IID 
samples

Provide explanations for observed 
patterns 

Reliably generalize to other 
domains  
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The main assumption of Supervised Learning

I Intuition: Pick balls at random from the same bag (and put
the ball back before picking another one)

Independent Identically Distributed

All samples are independently drawn from a fixed probability
distribution

I This assumption can be violated in several ways

Figure: Counterexample where train and test inputs have different
distributions
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Covariate shift

X

Y

Figure: X causes Y

I Happens in X causes Y
problems

I Covariate shift: P(x)
changes between train and
test but P(y |x) does not
change

I At test time, the model will
be confronted with parts of
the input space that it has
not seen during training
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Covariate Shift

TrainTest

x

y

?

?
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Prior probability shift

Y

X

Figure: Y causes X

I Happens in Y causes X
problems

I Prior probability shift:
P(y) changes between
train and test but P(x |y)
does not change

I Difficult because both the
input distribution P(x) and
what we model (P(y |x))
change
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Concept shift

I Concept shift in X causes Y problems: P(x) does not change
but P(y |x) changes

I Concept shift in Y causes X problems: P(y) does not change
but P(x |y) changes
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Different shifts together?

X

Y

Z

Figure: Z causes X and Y in
addition to direct effects

What happens in transcriptomics?

In biology, there are most certainly
(very) complicated relationships
between inputs and targets. Probably
lots of things change together

I Examples: covariate shift from
one individual to the other,
concept drift from one cell type
to the other.

I Quick (imperfect) fix: Normalize
data

I Warning: Normalizing also means
loosing information!
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Selection bias

selected subset
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Multiple studies

study 1

study 2

study 3
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Towards multi-environment learning and meta-learning?

I Other learning procedures exist and can be adapted to
transcriptomics

I Multi-environment training: assume that data comes from
different environments

I Meta-learning: Learn to adapt fast to a new environment
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Overview
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The acquisition process

Figure taken from Cancer genomics: one cell at a time
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Dropout in single cell

Gene counts
0 0 0

0

0
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Denoising Autoencoder

I How to denoise the data?
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Denoising Autoencoder
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Denoising Autoencoder
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ADAGE
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Overview
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The acquisition process

Figure taken from Cancer genomics: one cell at a time
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Different preprocessings

A key step

Preprocessing is a key step that determines what data will be fed
to our machine learning model. Each technique comes with
limitation and drawbacks

I Need to account for different total amounts of reads in the
different samples

I Need to account for the lengths of the genes

I Classic normalization methods: RPKM (Read Per Kilobase
Million), FPKM (Fragment Per Kilobase Million), TPM
(Transcripts Per Kilobase Million)

I Alignment: different reference genomes can be used from
one dataset to the other!
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Tremendous information loss!

Towards a more clever preprocessing?

A lot of information is lost during those preprocessing steps,
limiting what can be achieved downstream. Moreover, the non
standardized normalization and alignment limit our ability to
transfer knowledge from one dataset to the other.

I Could we do better?

I Example: RNA velocity inference using splicing information.

38 / 108



RNA velocity

you can visit https://scvelo.org

Figure taken from RNA velocity of single cells
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RNA velocity

Figure taken from RNA velocity of single cells
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Fat data

Number of features
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Figure: When data has lots of feature but few examples, data is called fat
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Fat data: Beware of spurious correlations!

Number of features

N
um

be
r o

f e
xa

m
pl

es
I Spurious correlations: with fat data,

features can be highly correlated
together out of chance!

I Example: binary, independent features
and 2 samples. Some features will have
a correlation of 1 out of chance!

Conclusion

In high dimension, you need lots of
examples!
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Estimate a function of 1 variable

I We want a high density of
samples (distance between
two sample points < 1

N ) in
order to estimate the
function reliably

I N samples to estimate the
function on [0, 1]
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Estimate a function of 2 variables

I To have the same density
of sample in 2 dimensions
we need N2 samples

I In dimension 3, we need
N3 samples...
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And with 20,000 dimensions?
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Volumes in high dimension

Cover the space in d dimensions

The volume of a hypercube [0, a]× [0, a]× ...× [0, a] of dimension
d is :

ad

In high dimension, volumes are very big!

I This is why kNN does not work in high dimension

I How to estimate a function in dimension 20k?

I Machine learning is about making the right assumptions
to overcome the need for many samples.
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Automatic feature extraction

Figure by Y. LeCun

51 / 108



Comparison with logisitic regression

I 1 hidden layer NN: the features fed to the logistic regression
are learnt
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Going deeper!

53 / 108



Going deeper!
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Going deeper!

I Example: Resnet, a 34 layer network!

I Needs additional trick (residuals) for forward and backward
signals to pass through
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The bias variance trade-off

I High model complexity: high variance low bias

I Low model complexity: low variance high bias

I You have to choose the right model complexity!
(regularization, model depth,...)
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The bias variance trade-off
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Why does ML work so well in Computer Vision?

Why does ML work so well in Computer Vision?

People have made made simplifying assumptions that hold well in
Computer Vision

I Let us dive into the details of CNNs
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Fully connected

I XL and XL+1 activations
vectors in layers L and
L + 1

I XL+1 = σ(WLXL + B)

Figure: matrix WL

XL XL+1
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Fully connected

= σ( x +  B)
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Convolutional layer

I XL+1 = σ(WLXL + B)

I parameter sharing :
constraints on WL

0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2

Figure: matrix WL with constraints
XL XL+1
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Convolutional layer

= σ( x +  B)

0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2
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Equivariance

image 1 image 2

P(face) 1 P(face) 2
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Equivariance

= σ( x +  B)

0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2

1.4

0.2

-0.7

1
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Equivariance

= σ( x +  B)

0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2 -0.7

1.4 0.2

1.4

0.2

-0.7

1
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What are the right assumptions for gene expression data?

I We would like to add prior knowledge and/or make
biologically grounded assumptions

What are the right assumptions for gene expression data?

I Use gene interaction graphs?

I Assume similarity of processes between genes?

I Assume similar perturbation response between
individuals/species?
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Incorporate Graph Prior Knowledge?

Figure: Example of a curated graph: StringDB
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Incorporate Graph Prior Knowledge?

I Idea: Use gene interaction graphs to constrain a ML model

I 2 questions:

I How to use the graph in a machine Learning model?
I Are curated graphs well suited for gene expression data?
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Adjacency matrix of a graph

I We can represent an undirected graph by its adjacency matrix

I Adjacency matrix: the value at coordinates (i , j) is 1 if
nodes i and j are connected, 0 otherwise
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Constraining the model: a simple example

= σ( x +  B)

Constraints

I This is one simple example

I Deep learning with graphs is a dynamic field of research!
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It does not seem to work!

I Curated graphs do not seem to be well suited for gene
expression data when using all genes
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A current debate

I A current debate: What if you choose the right genes?

What’s next?

Could there be an interplay between graph curation and ML model
performance?

I Identify genes that hurt performance
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Parameter sharing among genes?

Low dimensional state of the cell

Gene expressions are far from being independent, the data has a
lot of structure.

I Idea: Use Representation Learning with low dimensional
latent spaces (e.g. dim ∼ 500)

I We can perform analysis in the lower dimensional latent space
(e.g. fit a prediction model)

I But we still need a matrix of shape (20k, 500): lots of
parameters!

I Lots of things (regulatory processes, effects) might be similar
among genes

I We can share parameters among genes → Diet Networks
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Diet Networks
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Diet Networks: Magic trick!
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Diet Networks
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Diet Networks

= σ( x +  B)
hidden units

genes

gene features

Auxiliary 
network

80 / 108



Diet Networks

I Not yet applied successfully to gene expression data!

I The features that are fed to the auxiliary networks have to
contain the relevant information about the task you want
to solve!

Open question

What features to use for gene expression data?
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Response to perturbation
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Response to perturbation

I Observations: arithmetic in
latent space seem to make
sense (e.g. Word2Vec)

I Assumption: response to
perturbation is the same in
latent space across species/cell
types
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Overview
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Want to get some explanations from the model?

How to better understand what is happening?

How to know what the model is looking at? Let us investigate
feature importance techniques and their limitations
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Saliency Maps
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Saliency Maps

Figure taken from
https://mc.ai/feature-visualisation-in-pytorch%E2%80%8A-%E2%80%8Asaliency-maps/
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Parametric models

P(owl)

P(peacock)
NN(      , w) = 

0.6

-1.2

0.3

1.4

0.2

-0.7

Neural 
Network

Input
Output

parameters
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Usual training

How is a model usually trained?

I Iterate:

I Compute the error for a given
input

I Compute the gradient of the
error w.r.t each parameter ∂E

∂wi

using backpropagation
I Update the parameters in order

to lower the error:

w t+1
i = w t

i − λ
∂E

∂wi

Note

This is called Stochastic Gradient
Descent

E(      , label) P(owl)

P(peacock)

I λ is called the
learning rate

I In practice we use
several inputs at
once (in a batch)

I Other gradient
descent algorithms
exist (e.g. Adam)
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Back to the computation graph

Backpropagation

Figure by J. P. Cohen
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Back to the computation graph

Backpropagation

Figure by J. P. Cohen
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Saliency Maps

I For a given class probability, e.g.
P(owl), compute the gradient with

respect to the input ∂P(owl)
∂xi

I We get a real number for each input
feature

Interpretation

∂P(owl)
∂xi

: how much the class probability
P(owl) depends on feature xi
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Deep Dream

Intuition

Make the model dream the input that would maximize a given
class probability

I Gradient ascent in the input space to maximize a given class
probability
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Deep Dream: Gradient Ascent in the input space

I Update the input by iterating:

X1

X2

X3

X4

X5

X6

=    + 

X’1

X’2

X’3

X’4

X’5

X’6
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Deep Dream

I The input image has been updated in order to maximize the
probability of the dog class
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At the end of the lecture

Figure: You will learn how to dream 3s from other numbers!

Visit the following notebook: Google colab
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Limitations of feature importance methods

Limitations of feature importance methods

I Feature importance methods can be very noisy and difficult to
interpret for gene expression data.

I Feature importance does not provide a causal
explanation as the prediction can be confounded.
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Simpson’s paradox

I Two treatments for kidney stones

I Which one is better?

Stone
size

Treatment Outcome

Figure: The size of kidney
stones has an effect on
both treatment assignment
and outcome

Figure taken from https://en.wikipedia.org/wiki/Simpson%27s_paradox
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Simpson’s paradox: an example from regression

Figure: If we do not take age into account, we may conclude that height
has a negative influence on basketball performance!

103 / 108



How to understand the mechanisms of the cell?

Transcr.
Factor

Gene 1 Gene 2

?

I Would you like to identify
the effect of a gene on
another gene?

I Lots of confounders

I Current area of research
(module networks...)

Figure taken from https://clincancerres.aacrjournals.org/content/21/22/5047
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Simpson’s paradox: Take-away

Take-away

If you are provided with data that contains several partitions1, you
may want to fit a model on a whole data as well as separate
models for each partition.

I You can analyse the story told by feature importance
techniques applied to the different models.

I If all models agree, you have an interpretation that is robust
across partitions (but no guarantee that the story is true...)

I If not, you may want to investigate further (lab experiments?)

In transcriptomics, there are lot of unobserved confounders!
(e.g. non coding parts of the genome)

1e.g. cell lines, cell types, expression level of important Transcr. Factors
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Conclusion

Conclusion

I We investigated several challenges of Machine Learning when
it is applied to transcriptomic data.

I We need to design models making the right assumptions
for gene expression data!
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Practice time!
Visit the following notebook: Google colab
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