
Report
Restricted Boltzmann machines

Nicolas Rahmouni, Michel Deudon, Paul Bertin
(Dated: January 2018)

This work is done for the course Probabilistic Graphical Models taught by Guillaume Obozinski
and Francis Bach in the master Mathematiques Vision Apprentissage in ENS Cachan.

I. INTRODUCTION

Restricted Boltzmann Machines (RBMs) are a spe-
cific type of generative models. They were invented by
Smolensky in 1986 under the name harmonium [1] and
constitute one of the most common buiding blocks for
deep generative models. [2, 3]

RBMs are undirected probabilistic graphical models
containing one layer of observable variables and a single
layer of latent variables where all observable variables are
connected to all latent variables but there are no connec-
tions among the visible units, nor any connections among
the hidden units. Therefore RBMs are based on a bipar-
tite graph.

This architecture was designed to make the learning
process easier and allow efficient sampling such as block
Gibbs sampling.

We first present Restricted Boltzman Machines and
the underlying probabilistic graphical model. In section
3 and 4, we investigate inference and learning algorithms.
We then illustrate these methods on the MNIST dataset
and discuss results in section 5.

II. RESTRICTED BOLTZMANN MACHINE
MODEL

The RBM is an energy based model. Its energy func-
tion is given by

E(v,h) = −bᵀv − cᵀh− vᵀWh (1)

where v stands for visible units, h for hidden units and
b, c , and W are unconstrained, real-valued, learnable
parameters. The probability of a given state is given by

P (v,h) =
1

Z
exp(−E(v,h)) (2)

with Z the partition function that normalizes the proba-
bility.

The corresponding graphical model in which we see
that the only connections are between the visible and
hidden units, is shown in FIG. 1. Thanks to this bipar-
tite architecture, the hidden units are independent given
the visible units and vice versa. Therefore we can derive
a simple expression for p(h | v). Furthermore, the condi-
tional distributions p(h | v) and p(v | h) factorize nicely
which allows us to apply efficient sampling methods dur-
ing the learning process. In the following sections, we

will explain how inference and learning are performed on
this model.

FIG. 1: A Restricted Boltzmann Machine Graphical
Model (hidden nodes in gray and visible nodes in white)

III. INFERENCE

The inference problem on RBMs is to estimate one of
the conditional probability p(h | v) or p(v | h). In the
first, this comes to find the hidden variables for a set of
visible variables or to find some missing variables. For
example, if the visible variables represent the pixels of
an image, we would like to find the object in the scene
which are represented by the hidden units.

On the other case, we want to find some missing vis-
ible values. On images, we can think of this as an in-
painting problem. This can also be used for recommend-
ing movies. Each visible unit represents the grade that
one user gives to a movie. Obviously, there are a lot of
missing data and the idea is to infer the latent variables
hu for each realization of vu (each user) and to compute
p(v | hu) to estimate the grade that the user would give
to each movie on the database. So for those examples,
there are two inference steps.

At first, computing those probabilities seems difficult
as the partition function Z is intractable (and therefore
the joint probability distribution too). However, using
the structure of the graphical model, we obtain the fol-
lowing expression for a binary RBM which we will use
for our experimentation (see Appendix A for the deriva-
tions):

∀ j, p(hj = 1 | v) = σ(cj + vTW:,j) (3)

∀ i, p(vi = 1 | h) = σ(bi + Wi,:h) (4)

with σ(x) = 1
1+e−x the sigmoid function.

2

In summary, those formulas permit to infer the hidden
variables from the visible one and vice-versa which is the
key to solve numerous problems having a well-trained
RBM. Those formulas can also be used to sample those
variables during training, which can be done very effi-
ciently as they are independent (block Gibbs Sampling).

IV. LEARNING

To learn the parameters of the RBM, we aim to maxi-
mize the log-likelihood of the whole model given an input
v = v̄ which can be written as:

ln L(θ | v̄) = ln
∑
h

e−E(v̄,h) − ln
∑
v,h

e−E(v,h) (5)

with θ the parameters of the model which are b, c and W.
To find the parameters that maximize the log-likelihood,
a Gradient Ascent algorithm is used. We update sequen-
tially the parameters of the model with the following for-
mula:

θ(t+1) = θ(t) + η
∂

∂θ(t)
(ln L(θ(t) | v̄)) (6)

So, to apply this algorithm, we just need to estimate
the gradient of the log-likelihood (see Appendix B):

∂ln L(θ | v̄)

∂θ
= −Eh∼p(h|v̄)(

∂E(v̄, h)

∂θ
)

+Ev,h∼p(v,h)(
∂E(v, h)

∂θ
)

(7)

The first term can be computed easily but the second
term is intractable as it involves the probability of the
joint model which depends on Z. Hence, at each itera-
tion we need to estimate the expectancy using a MCMC
method. For each update, a sample v∗ is drawn from the
joint distribution and the expectancy is approximated by:

Ev,h∼p(v,h)(
∂E(v, h)

∂θ
) =

∑
v,h

p(v, h)
∂E(v, h)

∂θ

≈
∑
h

p(h | v∗)∂E(v∗, h)

∂θ

(8)

However, MCMC requires a lot of sampling steps to
converge to an unbiased sample. Hence, the whole prob-
lem now is to find methods that permit to compute effi-
ciently and precisely this expectancy, methods which we
will now describe.

A. Contrastive divergence

The Contrastive Divergence learning algorithm [4],
which has become the standard learning algorithm for
RBM, samples a visible variable with a Gibbs chain such
that v∗ = v(k) is sampled from the k-th step. The chain

is initialized at v(0) with a training example and at each
step t h(t) is sampled from p(h | v(t)) and v(t+1) from
p(v | h(t)). Obviously the estimation of the expectancy
is biased but the bias tends to zero when k tends to in-
finity. However the biais can lead to a distortion of the
learning process in the sense that the likelihood can di-
verge after a few iterations when k is small.

A batch version of the k-step CD algorithm for a binary
RBM is shown in figure 2.

FIG. 2: Batch version of CD-k

This algorithm computes the global gradient on a
training set of visible examples. As we can see, the first
for loop corresponds to a Gibbs sampler (we sample the
coordinates independently) that computes a sample v(k)

from the joint distribution. The three other for loops
correspond to the computation of the gradient for this
sample (see Appendix B for the formulas of the gradi-
ent). Note that we use v̄ = v(0) and the sample v∗ = v(k)

in the formulas derived above. One can note that the
operations are highly parallelizable on the coordinates
as they are independent. This can be useful when the
number of variables in the network is high.

B. Persistent Contrastive divergence

One of the key issues is to lower the time needed to
burn in the Markov Chain at each step. The CD algo-
rithm initializes the Markov Chain from the data distri-
bution. However, if we assume that the updates are small
enough, the joint probability from the previous step will
be close from the current joint probability.

It follows that the samples from the previous model’s
distribution will be very close to being fair samples from
the current model’s distribution. Therefore, we can ini-
tialize the Markov Chain with the samples from the pre-
vious step, and the mixing time of the Markov Chain will
be small.

This approach is known as Persistent Contrastive di-
vergence (PCD) [5]. Even if it tends to reduce the biais,

3

it does not avoid the divergence problem.
A variant of PCD algorithm is the Fast Persistent Con-

trastive divergence (FPCD) which introduces fast param-
eters to allow a faster mixing of the Markov Chain [6].
Those parameters are only used for the sampling process
and not in the model itself.

C. Parallel Tempering

The idea behind Parallel Tempering [7] is to introduce
supplementary Gibbs chains which will sample from the
same model but at different temperatures. The higher
the temperature, the smoother the probability distribu-
tion and thus the faster the mixing. The low temperature
chains will benefit from the fast mixing of high tempera-
ture chains.

This can be formalized in the following way. Given
M temperatures 1 = T1 < T2... < TM a set of M
Markov Chains is defined with probability distributions

pr(v, h) = 1
Zr
e−

1
Tr
E(v,h). In each step of the algo-

rithm, we run k (usually k=1) Gibbs sampling steps for
each tempered Markov Chain yielding samples (v1, h1) ...
(vM , hM). Afterwards, two neighbouring Gibbs chains
may exchange particles (vr, hr) and (vr−1, hr−1) with
probability based on the Metropolis ratio :

min(1,
pr(vr−1, hr−1)pr−1(vr, hr)

pr(vr, hr)pr−1(vr−1, hr−1)
) (9)

We then take the (eventually exchanged) sample v1

and repeat this procedure L times to obtain L samples.

D. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [8] is a sampling
method with a high acceptance rate enabling more effi-
cient exploration. The key idea is to simulate a Hamilto-
nian dynamical system : a particle is given some velocity
and moves in the potential field associated to the energy
of the model.

Formally, HMC samples from a distribution π(θ, r) ∝
p(θ | v̄)e−

1
2 r

TM−1r where the second term corresponds to
the kinetic energy.

One of the limitations of the HMC technique is that
it needs to compute the gradient of π (which gives the
direction where the particle goes) at each step. One can
use a noisy gradient estimate based on a subset of the
data.

V. EXPERIMENTS

A. Details

As a toy problem we considered the MNIST handwrit-
ten digit recognition benchmark [9].The training set con-

sists in 60000 samples of digits. Each image is a 28× 28
grayscale pixels, which are binarized with a threshold
value of 127. For some examples, see FIG. 3. Our goal
is to learn the parameters of the RBM and see if we can
reconstruct the original images from the latent variables
of the network which would mean that the network has
learned a good representation for this dataset.

FIG. 3: Examples of binarized images from the MNIST
dataset

In our experiments, we implemented the k-step CD al-
gorithm and investigated the influence of k and the num-
ber of hidden units on its convergence. For training, the
RBMs were initialized with small random weights sam-

pled from N (0, 4
√

6
nv+nh

). If not stated otherwise, 64

hidden units were used for modeling the MINIST data.
The models were trained for 10000 epochs, using gradient
ascent on CD-k with k in 1, 2, 3, 5, 10. For MNIST the
training data was split into mini-batches of 100 samples.
The learning rate was η = 0.05 for CD-learning. To keep
the number of hyperparameters small, we did not use a
momentum term, nor a weight decay term.

B. Results

We obtained pretty good results. As shown in FIG. 5,
the model is able to reconstruct input images from
the hidden units, meaning that it has learned a good
representation of the digits in a 64-dimensional space.
The convergence of the k-CD algorithm on the MNIST
dataset is shown in FIG.4. The higher the value of k,
the higher the reconstruction error. This is coherent be-
cause for higher k values, the reconstructed image passed
through more sampling steps. The fact that the recon-
struction error increases slowly with k shows that our
model separates well the different labels and thus is ro-
bust.

FIG. 4: Reconstruction error (MSE) between input
image (test set) and reconstructed image after

k = 100/5/3/2/1 (from top to bottom) Gibbs sampling.

Note that the value of k used to reconstruct the image
is not tied to the value of k used for the training process.
From a training point of view, the higher the value of

4

k, the better our estimation of the joint distribution and
thus the faster the convergence. Nonetheless, a higher k
also means a higher computational cost at each step and
one needs to find a good balance between burning in and
computation.

FIG. 5: Reconstruction error with k = 1 after training.
Original data (left) and sampled data (right)

In FIG. 6 we show the effect of the number of hidden
units on the reconstruction error. The higher the number
of hidden units, the lower the reconstruction error. This
is consistent with the fact that more hidden units allows
the model to capture more complex patterns.

FIG. 6: Reconstruction error (MSE) between input
image (test set) and reconstructed image after 1 block

Gibbs sampling steps, with
nh = 16/25/36/49/64/81/100 (from top to bottom)

hidden units.

In FIG. 7 we show the receptive fields associated to
each hidden unit : we activate a single hidden unit and
then sample visible units according to the conditional
distribution. Those images represent the patterns which
are most likely to activate a given hidden unit. For in-
stance, with nh = 25, we can see that some hidden units
are clearly sensitive to the number 3 and others to the
number 0. When the number of hidden units gets higher,
the detected patterns are more abstract and the actual
digits will be linear combinations of those patterns. This
allows the model to detect variations within each class of
digit and thus to be more accurate.

(a) nh = 25

(b) nh = 64

FIG. 7: Receptive fields. Images obtained by activating
a single hidden neuron and then sampling from the

visible nodes. (nh = 16 and nh = 64)

VI. CONCLUSION

Restricted Boltzmann Machines are a very interesting
application of Graphical models. They yield very good
results as shown here on the MNIST dataset but also on
more complex tasks : RBMs were used to win a Netflix
competition to predict user/movie ratings on a dataset
of over 100 million samples [10].

On top of that, RBMs can be stack together to form
Deep Belief Networks which are able to detect more com-
plex patterns.

The training computation cost is still an important
drawback, and many sampling methods such as Parallel
Tempering and Hamiltonian Monte Carlo try to tackle
this issue.

5

[1] P. Smolensky, “Parallel distributed processing: Explo-
rations in the microstructure of cognition,” 1986.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.

org.
[3] A. Fischer, Training restricted Boltzmann machines.

PhD thesis, University of Copenhagen, 2014.
[4] M. . Carreira-Perpin and G. Hinton, “On contrastive di-

vergence learning. artificial intelligence and statistics,”
2005.

[5] Tieleman, “Training restricted boltzmann machines us-
ing approximations to the likelihood gradient,” 2008.

[6] T. Tieleman and G. Hinton, “Using fast weights to im-
prove persistent contrastive divergence,”

[7] Cho, Raiko, and Ilin, “Parallel tempering is efficient for
learning restricted boltzmann machines,” 2010.

[8] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradi-
ent hamiltonian monte carlo,” 2014.

[9] Y. LeCun, “The mnist database of handwritten digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[10] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted
boltzmann machines for collaborative filtering,”

Appendix A: Inference derivations

We would like to express the conditional probabilities
for the RBM model. With the expression of the joint
probability, we have:

p(h | v) =
p(h,v)

p(v)

=
exp(bTv + cTh + vTWh)

Zp(v)

=
exp(cTh + vTWh)

Z ′(v)

Now, we remark that the hidden variables are indepen-
dent given the visible ones, so we can write:

p(hi | v) =
exp(ci + vTW:,ihi)

Z ′(v)

If we assume that we have binary variables, hi can be
either 0 or 1. So we can express the probability as the
partition function is only the sum of two terms:

p(hi = 1 | v) =
exp(ci + vTW:,i)

1 + exp(ci + vTW:,i)

= σ(ci + vTW:,i)

The same formula holds for p(v | h) because the prob-
lem is symmetric.

Appendix B: Gradient of the log-likelihood

The log-likelihood of the RBM model is written:

ln L(θ | v̄) = ln
∑
h

e−E(v̄,h) − ln
∑
v,h

e−E(v,h)

Let’s now compute the derivative of this quantity:

∂ln L(θ | v̄)

∂θ
=

∑
h

∂e−E(v̄,h)

∂θ∑
h

e−E(v̄,h)
−

∑
v,h

∂e−E(v,h)

∂θ∑
v,h

e−E(v,h)

= −

∑
h

e−E(v̄,h) ∂E(v̄,h)
∂θ∑

h

e−E(v̄,h)
+

∑
v,h

e−E(v,h) ∂E(v,h)
∂θ∑

v,h

e−E(v,h)

Here we recognize that p(h | v̄) = e−E(v̄,h)∑
h

e−E(v̄,h) and

p(v, h) = e−E(v̄,h)∑
v,h

e−E(v,h) so we have:

∂ln L(θ | v̄)

∂θ
= −

∑
h

p(h | v̄)
∂E(v̄, h)

∂θ
+

∑
v,h

p(v, h)
∂E(v, h)

∂θ

Which shows that:

∂ln L(θ | v̄)

∂θ
= Ev,h∼p(v,h)(

∂E(v, h)

∂θ
)− Eh∼p(h|v̄)(

∂E(v̄, h)

∂θ
)

For a binary RBM, let’s derive the equations for each
parameter (using the approximation in Equation (8)):

∂ln L(θ | v̄)

∂wi,j
= Ev,h∼p(v,h)(−vihj)− Eh∼p(h|v̄)(−v̄ihj)

≈ p(hj = 1 | v̄)v̄i − p(hj = 1 | v∗)v∗i

∂ln L(θ | v̄)

∂bi
=Ev,h∼p(v,h)(−vi)− Eh∼p(h|v̄)(−v̄i)

≈ v̄i − v∗i

∂ln L(θ | v̄)

∂ci
=Ev,h∼p(v,h)(−hi)− Eh∼p(h|v̄)(−hi)

≈ p(hj = 1 | v̄)− p(hj = 1 | v∗)

