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Abstract

During those four months in the Brain and Spine Institute under the supervision of

Stanley Durrleman, Nicolas Renier and Benjamin Charlier, I had the opportunity

to work at the interface between Mathematics and Biology Teams, to discover some

aspects of Shape Analysis and Brain Vasculature Anatomy, and broadly speaking, to

experience Academic Research.

The goal was to continue and extend the project ClearVessel initiated by Christoph

Kirst and Nicolas Renier. Based on 3D microscopic images at high resolution, we

aimed to get a better understanding of the organization of the vasculature in the adult

mouse brain. For this purpose, we designed and implemented various methods, heavily

relying on 3D embedded graphs extracted with ClearVessel.

Our work consisted in developing visualization tools, performing statistical analysis, de-

veloping two distances on graphs, and trying to improve the skeletonization process in

the ClearVessel pipeline. The two main contributions are the implementation of varifold

and normal cycle distances for protocol comparison, and the implementation of a feature-

based Wasserstein distance in order to compare the organization of the vasculature in

different regions of the brain.

In the course of this internship, I faced difficulties related to either the manipulation of

Gigabyte-big data, (multiprocessing, server management), reverse engineering of code,

and dealing with multidisciplinary expectations.
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Introduction

As part of the master Mathématiques Vision Apprentissage of École Normale Supérieure

Paris Saclay, I did a four month research internship at the Brain and Spine Institute

located in Paris. I was part of both the Aramis Team (Inria Paris) which designs new

approaches to study the structural and functional aspects of the brain, and the Renier

Team which studies brain plasticity. Thus I had the chance to study in a multidis-

ciplinary environment and got advices from both biologists and mathematicians. Along

this internship, I was supervised by Stanley Durrleman, Nicolas Renier and Benjamin

Charlier.

The purpose of this internship was to get a first experience of research and to put into

practice the tools studied during the academic year. I have been interested in computa-

tional neurosciences for quite a long time, and applying mathematical tools to biological

data in order to better understand the mechanisms of the brain was a very interesting

opportunity.

The Renier Team has developed a new technique for whole brain immunostaining and

volume imaging. Together with Christoph Kirst they developed the TopoVessel project

to efficiently extract 3D embedded graphs from the volume images of the vasculature.

The goal of my intership was to develop statistical tools and shape analysis techniques in

order to get a better insight into this gigantic amount of data.

In this report, I will describe the context of the project, from both the biological and

mathematical points of view, present some aspects of my code and possible extensions,

and then my results.

1



Chapter 1

Biological context

During this internship, we had to study both the biological and mathematical aspects of

the project. Here we present the context from the biological point of view.

1.1 Density and distribution of the vasculature in the brain

Those explanations rely on a review published in Neuroimage in 2017 [1]. The knowledge

of the cerebral vasculature is crucial to understand the principles of the blood flow in

the cerebral vasculature. The blood flow is related to neural processing as it controls the

energy supply.

We will focus especially on the adult mouse brain, as this corresponds to the images we

were provided with.

Figure 1.1: Schematic view of the vascular structure in the cortex

2
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1.1.1 Gross structure of the cortical vascular system

The cerebral arteries run along the surface of the cortex and ramify into a complex network

of pial arteries. Then the arteries leave the pial network and penetrate perpendicularly

into the cortex and form descending arteries.

The cortical arteries send off collaterals at different cortical depths. There exists several

types of arteries. Some of them feed superficial cortical layers, whereas others feed deeper

layers. Some cortical arteries even penetrate the entire cortex without any collateral until

reaching white matter.

Then the cortical arteries diverge into arterioles and finally end in the capillary network.

This is at the level of capillaries that most of the exchange of energy and oxygen occurs.

Capillaries then converge to the venous system, in which main cortical veins are oriented

perpendicularly to the cortical surface.

The main scheme of cortical blood flow is thus a descending flow from the surface to

some specific depth, an exchange of energy and oxygen in the capillary network and an

ascending flow to transport away the blood through ascending veins.

The microvascular (or capillary) system is a redundant network with a mesh width of

approximately 50µm. This mesh width is probably related to the diffusion constant of

oxygen in the brain tissue.

Those observations give us clues to analyses the vessel organization on a bigger scale.

1.1.2 Composition of vessels

Arteries, capillaries and veins are all composed of an endothelial cell layer (forming the

blood-brain barrier) and a thin basal membrane.

Capillaries only consist of these two elements, but arteries (and in a lesser extent veins)

are covered with a muscle sheath. Those muscles are responsible for the regulation of the

blood flow by changing the vessel diameter.

This specific composition has been used by the Renier Team in order to immunolabel

specifically arteries.

1.2 Imaging techniques

Until the work done by the Renier Team, the brain vasculature had not been observed

completely. Previous techniques either focused on a small region of the brain (of the
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Figure 1.2: 3D microscopic image of the brain vasculature on a transverse projection

order of magnitude of a µm3) or scaled to the whole brain without capturing the capillary

structure.

The protocol developed by the Renier Team allowed us for the first time to obtain the

full brain vasculature with a high level of details. The blood and the muscle sheath are

immunolabeled after a transparisation of the brain. Then, the acquisition is made using

a light-sheet microscope. An example is show on Figure 1.2

Final 3D images can weight up to 300 Gigabytes and analysing them is obviously a com-

putational and mathematical challenge. Together with Christoph Kirst, they developed

ClearVessel in order to extract 3D embedded graphs from those images. Those graphs

typically had about 90 million vertices.

1.3 Atlas annotation

Biologists have developed an atlas annotation of the adult mouse brain available online

at http://atlas.brain-map.org/. The ClearVessel pipeline allows to register brains

on this annotation and thus specific subgraphs corresponding to specific regions of the

brain can be extracted.

http://atlas.brain-map.org/
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Figure 1.3: Graph of the Central Lobule region of the brain. Big vessels are blue and capillaries
are red



Chapter 2

Technical Description

We will briefly describe some aspects of our code which is available at https://gitlab.

icm-institute.org/paul.bertin/TopoVessel.

2.1 Visualization

In order to visualize graphs embedded in 3D with the radius information, we developed

a 3D visualization tool based on the vispy library to plot vessels as tubes.

To do so, we created a class VesselVisual which wraps the class MeshVisual from the vispy

library. Given the vertex positions, edges and radii of the graph, this class constructs a

mesh object with all surfaces which will be plotted.

Figure 2.1: Descending arteries (red) and ascending veins (blue) in the barrel cortex

6
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Figure 2.2: Descending arteries (red) in the barrel cortex

We use the methods from vispy to plot in 3D. Unfortunately, the precomputation (nec-

essary to render the final plot without lag) is very slow and not parallelized. Up to now,

the final mesh is saved as basic numpy arrays. It would be great to be able to save them

in a Paraview compatible format, in order to take advantage of the optimized tools of

Paraview.

Our plot functions take colormap functions as argument. This enables the user to easily

change the colors of the visualization to see whatever characteristic he is interested in.

For more details, please refer to the Visualization.visualize.py file.

2.2 Graph

As in the ClearVessel project developed by Christoph Kirst, we used the graph-tools

library which is convenient for computations on very large graphs.

Not that we call a vessel a part of a capillary (or artery or vein) which is between two

intersections.

ClearVessel had a graph reduction method. Reducing a graph means merging all the

edges of a vessel into one. This is useful to run algorithms more efficiently. We extended

this method to manage graph annotations (for arteries, or other vessel features) and to

be able to extract subgraphs in a coherent manner.



Chapter 3

Shape analysis

In order to study the organization of the vasculature, we had to explore several tools and

mathematical frameworks. As we had access to graphs embedded in 3D space, we dived

into methods of shape analysis which have been developed in the past decades.

3.1 Context

Here we present the frameworks of varifolds and normal cycles, for which we show ap-

plication results later in the text. Those frameworks allow us to compute distances on

graphs with lots of relevant properties for our application.

3.1.1 Preliminaries

Thoses explanations rely on a paper from I. Kaltenmark, B. Charlier and N. Charon. [2]

A shape usually refers to a graph or a mesh embedded in ambient space Rn with n = 2 or

n = 3. For modeling purposes, we will now adopt a broader view (which includes those

specific cases) and see shapes as smooth submanifolds or reunion of smooth submanifolds

of dimension 1 (lines) or 2 (surfaces) embedded in Rn.

3.1.2 Varifolds

Let X be a smooth submanifold with finite total volume vol(X) <∞. We can associate

to X an oriented varifold µX wich is a distribution on the product space Rn×Sn−1. Here

Sn−1 refers to the unit sphere (as it can be identified with the space of tangent orientations

8
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for shapes of dimension or codimension 1). The measure µX is defined as follows :

µX =

∫
X

ω(x,~t(x))dvol(x) (3.1)

for any smooth test function ω : Rn × Sn−1 → R.

In the distribution sense, we may write µX =
∫
X
δ(x,~t(x))dvol(x) with the Dirac delta

δ(x,~t(x))(ω) , ω(x,~t(x)). This ensures that the identification X → µX is an injection.

Note that for usual graphs and meshes, we will choose a discretization scheme so that we

will only deal with finite sums of Dirac deltas.

In the case of a graph G embedded in 3D space without vertex of degree 0, we can consider

that G =
⋃
i

vi where vi is the ith edge. In this case, µG =
∑
i

µvi where µvi is the oriented

varifold associated with the edge vi which is approximately µvi = liδ(xi,~ti,ri)
with li the

length of the edge, ri its radius and xi the center of the edge.

Note that here we made a slight extension of the previous model by taking µG as a

distribution over R3 × S2 × R in order to take into account the radius of a given edge.

3.1.3 RKHS of oriented varifolds

The idea here is to take a specific family of test functions ω for our varifold representation.

We will take test functions belonging to a Reproducing Kernel Hilbert Space W with

an associated kernel of the form kpos ⊗ kor ⊗ krad. This is a convenient choice as the

combination of effects due to position, orientation and radius will be easily interpretable.

One can show that (see [2]) the following expression defines a scalar product on shapes :

〈X, Y 〉 = 〈µX , µY 〉W ? (3.2)

,
∫
X×Y

kpos(x, y)kor(~t(x),~t(y))krad(r(x), r(y))dvolX(x)dvolY (y) (3.3)

where X and Y are smooth submanifolds with finite total volume.

We then have to choose specific kernels which will induce convenient properties for our

application. We will thus choose Gaussian kernels for the position and the radius, and

Binet kernel for the orientation. This setting corresponds to the functional unoriented

varifold.

Note that choosing the linear kernel for the orientation would correspond to currents.
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Figure 3.1: A planar curve in blue and its unit normal bundle in red. Source [3]

3.1.4 Normal cycles

Normal cycles are a variation on the previous approach. Compared to varifolds, they

give more importance to the extremities of the shape. This is very interesting as we are

interested in detecting interrupted vessels for example (which would give two extremities

instead of zero).

Formally, the normal cycle of a shape is the current associated with its normal bundle.

Those explanations rely on the thesis of Pierre Roussillon [3].

Definition 3.1. The normal cone of a shape X at a point x is

Nor(X, x) ,
{
u ∈ Rd,∀v ∈ TxX, 〈u, v〉 ≤ 0

}
(3.4)

Definition 3.2. The unit normal bundle of X is

NX ,
{

(x, n) ∈ Rd × Sd−1, x ∈ X,n ∈ Noru(X, x)
}

(3.5)

where Noru(X, x) , Nor(X, x) ∩ Sd−1

Definition 3.3. 〈.|.〉 refers to the duality product on Λd−1(Rd×Sd−1), the space of (d-1)

vectors of Rd × Sd−1 [3, pages 51-52]. The algebraic dual of Λd−1(Rd × Sd−1) is the space

of (d-1) forms Λd−1(Rd × Sd−1). Thus :

〈.|.〉 : Λd−1(Rd × Sd−1)× Λd−1(Rd × Sd−1)→ R (3.6)

φ, x 7→ φ(x) (3.7)

Definition 3.4. The Normal Cycle of a set X is :

N(X)(ω) ,
∫
NX
〈ω(x, n)|τNX (x, n)〉dvol(x, n) (3.8)

where ω is a differentiable form and τNX (x, n) is the (d − 1) vector associated with an

orthonormal positively oriented basis of T(x,n)NX .
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In the same manner as before, we then choose ω to belong to some RKHS to derive

suitable metrics on shapes.

In the case of graphs and choosing the linear kernel for normals, the approximated scalar

product between Normal Cycles is [3] :

〈N(G1), N(G2)〉W ? =
π2

2

∑
x,y

kpos(x, y)lxly cos2(θx,y) (3.9)

+
16π2

3

∑
c,s

kpos(c, s)

(
1− deg(c)

2

)(
1− deg(s)

2

)
(3.10)

where the first sum is over edges and the second over vertices. θx,y = 〈x/lx, y/ly〉.

3.1.5 Local distances

For interpretability purposes, we are interested in developing tools capturing local differ-

ences between shapes.

One way to do this would be to take the norm of the gradient of the distance with respect

to each vertex in the graphs. We would then have for each vertex in our graphs, an

indication of its proximity with the other graph.

Another technique, is to filter our shape with multiple localized windows and then com-

pute the distances described above on the filtered shapes.

In practice we used Gaussian windows.

Definition 3.5. Let GFc be the Gaussian window centered in c ∈ R3. Filtering the

graph G =
∑
liδxi,~t(xi) gives :

GFc(G) ,
∑

e−
||xi−c||

2

σ2 liδxi,~t(xi) (3.11)

Our filters are linear bijections and thus for any center of window c, 〈GF c(G1), GF c(G2)〉 =

〈µGF c(G1), µGF c(G1)〉W ? is still a scalar product on graphs.

We can then visualize the function c ∈ R3 → ||GF c(G1), GF c(G2)|| to understand where

graphs are different from one another.

One could also use windows with compact support for scalability : the computational

cost of computing one local distance would then be independent of the total size of the

graph. A goof choice would probably be windows associated with a truncated Gaussian

function (of the form x→ 1Ice
− ||x−c||

2

σ2 where Ic is an interval of R3 centered in c). In any
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case, one should avoid to use functions with big discontinuities such as indicator functions

to avoid side effects.

3.2 Protocol comparison

In order to compare the graphs obtained with the PODO protocol (corresponding to

immunolabeling the membrane of the vessels with Podocalyxin) and the IgG-protocol

(corresponding to immunolabeling directly the blood with Immunoglobulin G), we com-

puted local distances (with either varifolds or normal cycles) as explained in Section

3.1.5.

3.2.1 Implementation

We implemented a functional varifold distance and a normal cycle distance (as well as

their local variants using Gaussian filters) using the pytorch library. The use of pytorch

was convenient as similar code was available in the Deformetrica software, and the auto-

differenciation would be useful in case on wants to use gradients in the future.

3.2.2 Results

We then visualize local varifold distances projected on graphs as shown on Figure 3.2.

Intuitively, local distances seem to make sense, as portions where the reconstructed graphs

are similar are close to each other while portions where reconstructed graphs are very

different (e.g. a vessel appears in one graph and not in the other) are distant.

The visualization of local normal cycle distances proved to give very similar results to

varifold distances. It might be because, in the computation of the distance, the term on

edges is predominant over the term on vertices. Further analysis should be performed to

confirm this hypothesis.

3.2.3 Possible extensions

This tool has been designed to assist biologists to spot reconstruction errors while visu-

alizing graphs. Thus the colormap directly ploted on the graphs appears to be adapted.

If one wants to use this tool to automatically assess that graphs correspond to the same

reconstruction, one should think about using this distance computation in a pipeline to

indicate coordinates where problems happen.
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Figure 3.2: Local varifold distances projected with a colormap on graphs. Red corresponds
to big distances and green to small ones. Left is the graph reconstructed with the IGG protocol

(blood immunolabeling) and right is the PODO protocol (vessel immunolabeling)

Note that graph reconstructions are still very sensitive to the parameters used for the

ClearVessel pipeline, and this can be an issue if one wants to compare the accuracy of

the protocols themselves (and not the accuracy of the parameters used). More specifically,

the two images from the two protocols might have different brightness and contrast, which

requires to use different parameters for the ClearVessel pipeline. How to assess that an

artifact in one of the graphs is due to limitations inherent to the protocol and not to a

bad choice of parameters ?



Chapter 4

Organization analysis

Shape analysis frameworks define topologies which are well suited tools when one wants

to compare graphs which are very similar, that is to say graphs which have similar spatial

conformations.

Nevertheless, we are also interested in finding other representations of graphs so that

it is possible to compare graph organizations without being blinded by the exact spatial

conformation of each graph. More precisely, we would like to compute a distance between

graphs corresponding to different regions of the brain in a way that reflects the different

organizations of the vasculature.

4.1 Organization analysis and Optimal Transport

We first present some elements about the computation of optimal transport.

4.1.1 Exact computation

4.1.1.1 The exact transportation problem

The study of Optimal Transport was first initiated by G. Monge, in order to minimize

the effort (i.e. the amount of work) necessary to move dirt from one place to another.

The theory was then extended by Kantorovich whose formulation we use thereafter

[4, pages 42-44].

Formally, given two distributions of mass, the goal is to find a mapping between them

which is optimal according to some cost function.

14
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Definition 4.1. Let P(Rd) be the set of all distributions on Rd. Let µA and µB ∈ P(Rd).

A solution to the Kantorovich’s problem is given by a coupling π ∈ P(Rd×Rd) satisfying

the following infimum :

inf
π

{∫
Rd×Rd

c(x, y)dπ(x, y) : π ∈ Π(µA, µB)

}
(4.1)

where c stands for the cost function and Π(µA, µB) for the set of all couplings between

µA and µB i.e. distributions over Rd × Rd with marginals µA and µB.

We can show that for a good choice of the cost function c, the solution to Kantorovich’s

problem exists.

Lemma 4.2. Let c : Rd × Rd → R ∪ ∞ be lower continuous and bounded from below.

Then the infimum of Kantorovich’s problem is always attained by a transport plan π ∈
P(Rd × Rd).

For instance, if one chooses c to be the 1-norm or 2-norm in Rd (what we use in practice),

the problem admits a solution.

4.1.1.2 Formulation as a linear problem

As we will be dealing with computational applications, we will now restrict ourselves to

the discretized problem, which we will formulate as a linear problem. This will enable us

to use out of the box linear solvers.

Let us consider two discrete distributions µA =
nA∑
i=1

pA,iδxA,i and µB =
nB∑
i=1

pB,iδxB,i where

nA and nB are the number of points, δx is the Dirac at location x and (xA,i)
nA
i=1, (xB,i)

nB
i=1 ∈

(Rd)N two point clouds.

The set of couplings between µA and µB is :

Π(µA, µB) =

{
(πi,j)i,j ∈ (R+)n0×n1 : ∀i,

∑
j

πi,j = pA,i, ∀j,
∑
i

πi,j = pB,j

}
(4.2)

and the Kantorovich’s problem becomes :

π? = argmin
π∈Π

∑
i,j

ci,jπi,j (4.3)
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where ci,j = ||xA,i − xB,j||pp for p = 1 or 2. Intuitively, ci,j represents the amount of

work necessary to move one unit of mass from xA,i to xB,j, and πi,j the amount of mass

displaced between xA,i to xB,j.

The Lp-Wasserstein distance can then be computed as Wp(µA, µB)p =
∑
i,j

πi,jci,j.

The constraint π ∈ Π can be rewritten in matrix form, and we thus have a linear problem

which can be solved using the simplex algorithm or interior points methods.

4.1.2 Approximate computation

Solving the exact transportation problem quickly becomes intractable when dealing with

large domains. To overcome this issue, one can relax the problem with an entropy reg-

ularization, which leads to a reduction of the dimension of the problem. Those methods

showed impressive results when dealing with images [5] and they could enable us to use

more features (thus having distributions in higher dimensional spaces) and generally, to

use discretized domains with a higher number of bins.

The entropy of a coupling is given by :

H(π) , −
∫
Rd×Rd

π(x, y) ln(π(x, y))dxdy (4.4)

And the regularized problem is :

W p
p,γ(µA, µB) = inf

π

{∫
Rd×Rd

c(x, y)dπ(x, y)− γH(π) : π ∈ Π(µA, µB)

}
(4.5)

with γ some positive constant. Note that here Wp,γ(µA, µB) is only a pseudo-distance as

it is not always positive.

The efficiency of the method comes from specificities of the numerical framework which

we will not detail here, the reader can refer to [5]. In short, the number of unknowns in

the problem is reduced from n2 to 2n.

4.2 Data exploration and features

4.2.1 Spatial analysis

We implemented various spatial features on graphs, i.e features taking advantage of the

3D embedding of our graph.
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Figure 4.1: Density of vessels in the graph seen on a coronal section. We see a higher density
in cortical regions than in most over regions of the brain

4.2.1.1 Spatial features

We adapted the code from Clearvessel to visualize graph spatial features as 3D images.

This can give a good insight to biologists and help us to analyze the relevance of each

feature. For example one can visualize the density of vessels in the brain. An example is

shown on Figure 4.1.

We used the following features for our experiments : density of vessels, density of in-

tersections, biggest radius in a cubic patch, and distribution of vessels in a cubic patch.

Those are simple features which may reflects simple differences and obviously other, more

complex features could be used.

4.2.1.2 Discriminative power of spatial features

In order to assess the discriminative power of our feature representation. we set up a

supervised pipeline to discriminate between patches extracted from different regions of

the brain.

The pipeline is described on Figure 4.2. We extract a subgraph (called a patch) corre-

sponding to a small cube of the original 3D image (typically of size 200px×200px×200px)

which is then fed to a Random Forest classifier.

Our quantitative results for Isocortex and Hippocampus are shown in Table 4.1. The

different lines of the table correspond to the accuracies using only one feature. We used

the random forest classifier with 10 estimators and a maximal depth of 10.
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Figure 4.2: Description of the supervised pipeline to assess the discriminative of our spatial
feature representations

Train acc. Test acc. Test prec. Test recall

Nvertex 0.79 0.54 0.55 0.55
Nintersec 0.72 0.58 0.59 0.58
Biggest ves. 0.80 0.53 0.53 0.53
Hist (small) 0.61 0.54 0.61 0.55
Hist (big) 0.90 0.65 0.66 0.66
all 0.91 0.70 0.71 0.70

Table 4.1: Discriminative power of features (Isocortex vs Hippocampus) using random forest
nestimators = 10, maxdepth = 10 on 200× 200 patches

For this two class classification task, we achieve 70% test accuracy, but the algorithm

might rely mostly on artifacts inherent to the immunolabeling process (e.g. deeper regions

have lower average radius, as explained in Section 4.2.2.2) and not on differences in the

actual structure of the vasculature.

4.2.2 Analysis of Vessels

We have performed analysis on the different types of vessels in the brain. We would like

to see if some specific types of vessels are specific to some regions of the brains. For

example, we could expect that big long straight vessels would be found only in upper

layers of the cortex (corresponding to ascending veins and descending arteries).
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4.2.2.1 Vessel features

We used rather simple features for vessels, mean radius along the vessel, its length, its

orientation, its curvature and its torsion. Those are features that biologists have used

informally to distinguish between different types of vessels such as capillaries and arteries.

4.2.2.2 T-SNE visualization

In order to analyse the vessel feature representations and find some relevant low dimen-

sional embedding, we used t-Distributed Stochastic Neighbor Embedding (t-SNE), which

has been presented in 2008 [6].

Thus we performed T-SNE visualizations of our vessel feature representations as shown

in Figure 4.3 and Figure 4.5. Vessels seem to organize along a one dimensional manifold

which is quite surprising at first. In fact, they are organized by increasing order of radius.

This might be due to an artifact of the immunolabeling process. The immunomarker

diffuses from the cortex to deeper regions in the brain. Thus, cortical regions appear

brighter in the volume image and reconstructed radii are bigger. We tried to overcome

this artifact by shifting radii distributions so that all regions of the brain have radii

distributions with the same average radius. It turned out that the vessels were then

organized by length.

Those observations point out that our feature representations do a quite bad job at

extracting the relevant characteristics of the different types of vessels in the different

regions of the brain. Therefore, one should try to extract more features or to make

existing features more robust to noise.

4.3 Organization of the vasculature accross the brain

In order to compute a distance between graphs in a way that reflects the different organi-

zations of the vasculature, we find a feature-based surjection of our graphs to some space

of probability distribution and then compute the L1-Wasserstein distance in this space.

We consider regions of the brain as feature distributions. We then compute Wasserstein

distances between all pairs of regions. Results are shown on Figure 4.6, Figure 4.7 and

Figure 4.8. For tractability reasons, we only used three features to represent vessels :

radius, length and curvature.
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Figure 4.3: T-SNE visualization of the vessel feature representation with all vessels (subsam-
pled) in ten regions of the brain

Figure 4.4: Legend of region colors
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Figure 4.5: T-SNE visualization of the vessel feature representation with all vessels (subsam-
pled) in ten regions of the brain. Color corresponds to atlas annotation colors

For preprocessing, we shift distributions of vessels so that all regions have the same

average radius. After shifting, we only take into account vessels with radii lower than

5000 (arbitrary unit) to avoid artifacts.

We then use hierarchical clustering to cluster together regions of the brain. Those results

would need more advanced analysis by biologists, but we note that the different cortical

layers tend to be clustered in different clusters, while regions corresponding to the same

cortical layer tend to be clustered together.

4.4 Future possible extensions

4.4.1 Short term

The ClearVessel project is still in progress and some issues regarding vessel interruptions,

and shadow vessels (nonexistent vessels which are created by the Clearvessel pipeline
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Figure 4.6: Distance matrix between all regions in the brain. Rows and columns are ordered
according to hierarchical clustering using Ward criterion

Figure 4.7: Distance matrix and associated dendrogram. Rows and columns are ordered
according to hierarchical clustering using Ward criterion



Analysis of 3D microscopic brain images at high resolution 23

Figure 4.8: Clusterization for different numbers of clusters as given by hierarchical clustering

will trying to reconnect other vessels) would need improvements before more analysis is

performed on graphs

More features could be extracted from graphs, for example an analysis of the cycles could

be very interesting. Moreover, our computation of the curvature and torsion was very

sensitive to noise, and one could try to develop a more robust computation (by fitting

regular curves on the vessels for example).

Last but not least, there is a lot of arbitrary choices in the way we compute the distance.

The Wasserstein distance is computed based on the euclidean metric on the domain of

distributions, where each feature is expressed in arbitrary unit. One may want to think

about using a non euclidean metric on the domain, to weight the relative importance of

features. For example, we may want to penalize less the transformation of a medium

radius artery into a big radius artery than the transformation of a medium radius artery

into a capillary (small radius). Note that to define such a distance, it is necessary to rely

on biologically grounded assumptions.
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4.4.2 Long term

The way we compute the Wasserstein distance should be improved. This would allow to

take a higher dimensional feature representation as input, and thus, use more features

for the graph.

Moreover, a very interesting development would be to develop techniques to extract

features in an unsupervised manner, in order to detect patterns which may not be detected

by a human observer. For this purpose, tools for inductive learning on graphs have been

developed recently [7].



Chapter 5

Vessel binarization

Together with Sophie Skriabine, we tried to improve the binarization of raw images in

the ClearVessel pipeline. The code is available online at https://github.com/skriabineSop/

vessel_unsup_seg.

5.1 Deep Learning

We used deep learning on 3D images and more precisely a Wnet-like autoencoder in a

similar way as in [8].

5.1.1 Origin and understanding of Deep Learning

In this section we will discuss the purpose of using deep learning. This discussion was

inspired by Stéphane Mallat’s attempts to precisely understand convolutional networks

[9, 10]. For the sake of simplicity we will restrict ourselves to a classification problem of

an instance x with label y.

One of the key points when tackling a classification problem is to reduce the dimension-

ality of our data. Dimensionality reduction is very powerful because our examples will

be much more dense in low dimensional spaces, and thus it will be much easier to find

relevant patterns. Note that in high dimensional spaces, volume is very big and that even

a large amount of data will be very sparse.

To reduce the dimensionality, we find invariances of the distribution P (Y |X) (i.e. do-

mains along which the distribution does not depend on X). In fact, those invariances

and the hidden relations between examples and labels are two sides of a same coin.

25

https://github.com/skriabineSop/vessel_unsup_seg
https://github.com/skriabineSop/vessel_unsup_seg


Analysis of 3D microscopic brain images at high resolution 26

Figure 5.1: Projection along the invariance of the probability distribution, thus destroying
the meaningless noise in the data

Ideally, we would like those invariances to be linear, so that we can project linearly

into a subspace of lower dimension without losing information. Once we are in a small

enough space, we hope that we can infer P (Y |X) according to some very simple rule (e.g.

the value of some coordinate of the input x). In this case, we say that there is linear

separability.

The problem is that invariances are hardly never linear, so the main goal will be to

linearize them. We will briefly explain the strategy of kernel classifiers and then discuss

convolutional networks.

5.1.1.1 Kernel classifiers

A way to linearize the invariances of P (Y |X), is to find some change of variable ψ which

maps the inputs x to some space of dimension d′, potentially much larger than the initial

dimension d of x. We can then operate some low-dimensional linear projection along

invariances.

Formally, we say that the change of variable ψ separates linearly the function f : x 7→ y

if f is well approximated by a one dimensional projection

∃ω ∈ Rd′ s.t. f̃(x) = 〈ψ(x), ω〉 (5.1)

Their has been a lot of efforts put on those methods in the last decade, but it turned out

to be very difficult to find such a convenient ψ [9].
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5.1.1.2 Convolutional networks

Convolutional networks were first introduced by Le Cun [11] in 1990. They have been

rediscovered recently thanks to the improvements of computational power and processing

speed.

Those networks are optimized in order to find a change of variable ψ by combining in

an iterative manner elementary bricks : convolution + non-linearity. More precisely, the

network alternates linear operators and contractive non-linearities in successive layers.

The architectural constraint is imposed, and optimization is done on convolution weights.

The intuition is that the network kills variability of the data and extracts invariants

hierarchically along the layers. In the same time, the change of variable ψ tends to

linearize the function f (f maps the input to the label, and is at first highly non-linear).

Along this process, pooling operations (i.e. functions which reduce the dimensionality of

the signal, such as downsampling) are also used to progressively shrink the dimension of

our space.

Once the change of variable is achieved, we can easily separate examples to classify.

The actual process by which such a linearization is achieved remains obscure, and its

understanding is an open field of research.

5.1.2 Autoencoders

Autoencoders are a specific type of neural networks where the network is trained to

reconstruct its input (i.e. X is its own label) while signal being forced to go through a

latent space. This latent space is usually of lower dimensionality than the input in order

to extract only relevant patterns in the original input [12]. One can also add specific

priors on the latent space to give latent representations the desired properties.

5.2 Binarization

Together with Sophie Skriabine, we implemented autoencoders for 3D images using

pytorch. The goal here is to get a binary image from the raw image in order to segment

the vessels in an unsupervised manner.

We fed small 3D-patches (40×40×40) to the autoencoder (dataset of about 2e5 patches),

which is trained to reconstruct the input patch. The latent representation is binarized
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Figure 5.2: Architecture of our W-network. It is composed of an Encoder and a Decoder.
The latent representation in orange is the binarization of the input image. Each green paral-
lelogram represents a 4D tensor. The dimensions of corresponding images are indicated inside
the parallelogram (e.g. 20×20×20) and the number of channels is indicated above. desep conv

stands for depthwise separable convolutions

before being fed to the decoder. Note that the pipeline is still differentiable for backprop-

agation as we manually defined gradients for the binarization step. The idea is to obtain

a binarization wich contains a maximum amount of information for reconstruction.

The decoder is only used to optimize the encoder. Once in production mode, only the

encoder will be used to get the binarization.

5.2.1 Architecture

We adapted a paper for 2D image segmentation using W-net [8]. We used 3D-convolutions

instead, and simplified the network as the task is quite simple compared to the one of

the article (segmentation in natural images).

Our encoder and decoder architectures are inspired by the U-net architecture [13]. Infor-

mation follows first a contracting path to capture context and then a symmetric expanding

path that enables precise localization thanks to skip connections. A Skip connection refers

to the fact of storing the activation tensor at one point to concatenate it with another

tensor deeper in the network.

A detailed presentation of the architecture of our W-network is presented in Figure 5.2.

We used basic convolutions (with 3×3×3 kernels) as well as depthwise separable convolu-

tions (a depthwise convolution followed by a pointwise convolution, in order to decouple

cross-channel computations and spatial computations). Note that depthwise separable

convolutions have the advantage of reducing the number of parameters compared to
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usual convolutions, which is especially suitable for 3D-images. More precisely, a 3× 3× 3

convolution with k filters has 27 × k × nchannel parameters whereas the corresponding

depthwise separable convolution only has (27 + k) × nchannel parameters, where nchannel

is the number of channels of the input tensor. Finally, the binarize operation refers to

applying x 7→ 1x>0.5 elementwise.

To compress spatial information, we used max pooling with a kernel size of 2. To expand,

we used upsampling with trilinear interpolation.

5.2.2 Optimization

5.2.2.1 Optimization parameters

We optimized with Adam algorithm [14] with the following parameters : learning rate=1e−
3; β1 = 0.9; β2 = 0.999 and ε = 1e−8.

For the reconstruction loss, we chose a simple Mean Square Error between the voxels of

the reconstructed image and the ones of the input image.

To monitor the optimization process, we used our visualization tools for 3D image visu-

alization as well as Tensorboard.

5.2.2.2 Regularization

In order to obtain a latent representation with the desired properties (e.g. continuity

of vessels) we tried to put a prior distribution on the latent space. In the optimization

process, this is equivalent to adding a regularization term.

We tried several regularizations. As suggested in the article [8], we used Soft Normalized

Cut, which tends to produce clusters with minimal frontier between them. For details

about Soft Normalized Cut, please refer to [15]. We chose λSC = 5e−11 as the regular-

ization parameter.

As an attempt to reduce the noise in our segmentations, we also used a Total Variation

regularization [16], which is widely used for image denoising. We chose λTV = 5e−8 as

the regularization parameter.

A visualization of the binarization with this pipeline is provided Figure 5.3
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Figure 5.3: Left : input image. Right : binarization obtained with the encoder. We observe
that vessels appear larger than in the original image and that a dark section of a vessel is

successfully reconstructed (backmost voxels)

5.2.3 Possible extensions

Even with those regularizations, we did not succeed in segmenting vessels without any

interruption. To improve this, one would probably need a prior distribution which is

structure-aware, meaning that the information of the vessel structure as continuous tubes

would be contained in the prior distribution.

We should also be concerned with the scalability of this method to full brain images.

As the previous technique also used some convolutions, the computation times should

be of the same order of magnitude (but we use more convolutions, 7 in total for the

encoder, but only 3 convolutions on full-size images, which constitute the computational

bottleneck).



Conclusion

During those four months, I had the chance to be part of a pluridisciplinary environ-

ment and to discover academic research in both biology and mathematics. I developed

visualization and mathematical tools which, I hope, will help biologists analyze the huge

amount of brain volume images they work with. On top of that, I enjoyed documenting

on various methods, from shape analysis to optimal transport.

The main contributions are the implementation of varifold and normal cycle distances for

protocol comparison, and the comparison of the organization of the vasculature in different

regions of the brain based on a feature-based Wasserstein distance. I also performed

some statistical analysis on the graphs, developed a method for graph reduction, and

used autoencoders to try to improve the vessel segmentation.

There is still a lot of work to do on this project. In my opinion, the pluridisciplinary aspect

would require several people with different backgrounds to work on it. Most importantly,

I think a reflexion about how to get people with different backgrounds to work efficiently

together is necessary. Even if I do not have the solution, my intuition is that one of

the key aspects of a good strategy would be to define clear long-term and middle-term

objectives. This way, each one would be able to use their skills and knowledge to achieve

their goal.

To summarize, I think this internship was a very good experience which helped me define

what I want to do in the future. I would be eager to tackle theoretical issues (defined in

cooperation with biologists or clinicians) which would help in a broad range of applica-

tions.
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Appendix A

List of Brain regions by cluster

Cluster 1

Parastrial nucleus , Paragigantocellular reticular nucleus, dorsal part , Supragenual nucleus , Edinger-Westphal nucleus , Perireunensis nucleus

, Infralimbic area, layer 6a , Nucleus raphe pontis , Subparafascicular nucleus, magnocellular part , Retrosplenial area, lateral agranular part,

layer 6a , Anteromedial visual area, layer 2/3 , Infralimbic area, layer 6b , Subgeniculate nucleus , Nucleus x , Superior olivary complex,

medial part , Nucleus of the trapezoid body , Supratrigeminal nucleus , Motor nucleus of trigeminal , Anteromedial visual area, layer 6a ,

Primary somatosensory area, upper limb, layer 5 , Medullary reticular nucleus, dorsal part , Tegmental reticular nucleus , Dorsal auditory

area, layer 4 , Primary somatosensory area, trunk, layer 4 , Primary somatosensory area, lower limb, layer 4 , Primary auditory area, layer

5 , Primary visual area, layer 4 , Supramammillary nucleus , Superior vestibular nucleus , Anterior cingulate area, ventral part, 6b , Linear

nucleus of the medulla , Ventral posterolateral nucleus of the thalamus, parvicellular part , Preparasubthalamic nucleus , Subceruleus nucleus

, Lateral visual area, layer 4 , Posterolateral visual area, layer 5 , Primary visual area, layer 5 , Retrosplenial area, lateral agranular part,

layer 5 , Dorsal premammillary nucleus , Primary auditory area, layer 6a , Secondary motor area, layer 5 , Orbital area, ventrolateral part,

layer 5 , posteromedial visual area, layer 4 , Posterolateral visual area, layer 4 , Gigantocellular reticular nucleus , Pedunculopontine nucleus ,

solitary tract , Intermediate reticular nucleus , medial longitudinal fascicle , Nucleus raphe magnus , Hypoglossal nucleus , Primary auditory

area, layer 4 , Medullary reticular nucleus, ventral part , Accessory supraoptic group , Subparafascicular area , optic nerve , Accessory facial

motor nucleus , Infracerebellar nucleus , Trochlear nucleus , doral tegmental decussation , Oculomotor nucleus , Ventral tegmental nucleus

, Anteromedial visual area, layer 6b , Lateral visual area, layer 6a , Anterolateral visual area, layer 6b , Posterior auditory area, layer 6b ,

Posterolateral visual area, layer 6b , Lateral vestibular nucleus , Abducens nucleus , principal mammillary tract , Lateral visual area, layer

6b , Posterolateral visual area, layer 6a , Lateral visual area, layer 5 , Anteromedial visual area, layer 4 , Posterior auditory area, layer

4 , Posterior auditory area, layer 5 , Posterior auditory area, layer 6a , Anteromedial visual area, layer 5 , Central linear nucleus raphe ,

Paraventricular hypothalamic nucleus, descending division

Cluster 2

ventral tegmental decussation , Anterior pretectal nucleus , Ventral posteromedial nucleus of the thalamus, parvicellular part , mammillotha-

lamic tract , Nucleus sagulum , Dorsal tegmental nucleus , Gustatory areas, layer 6a , Primary somatosensory area, upper limb, layer 4 ,

Anterodorsal preoptic nucleus , Retrosplenial area, ventral part, layer 6b , Retrosplenial area, lateral agranular part, layer 6b , Nucleus of

Darkschewitsch , Central lateral nucleus of the thalamus , Locus ceruleus , Anterior tegmental nucleus , Posterior pretectal nucleus , inferior

colliculus commissure , Primary somatosensory area, trunk, layer 6a , tectospinal pathway , Primary somatosensory area, mouth, layer 6b ,

Cuneiform nucleus , Primary somatosensory area, upper limb, layer 2/3 , Globus pallidus, external segment , Prelimbic area, layer 6a , Field

CA2 , Agranular insular area, ventral part, layer 6b , Orbital area, medial part, layer 6a , Fields of Forel , Primary somatosensory area,

trunk, layer 5 , Fastigial nucleus , Retrosplenial area, ventral part, layer 5 , Primary somatosensory area, mouth, layer 6a , Midbrain reticular

nucleus, retrorubral area , Pontine reticular nucleus , Pontine reticular nucleus, caudal part , Nucleus ambiguus, dorsal division , Medial

preoptic nucleus , Superior central nucleus raphe , superior cerebelar peduncles , Nucleus prepositus , Paraventricular hypothalamic nucleus ,

Subparafascicular nucleus, parvicellular part , Visceral area, layer 6a , Temporal association areas, layer 5 , Temporal association areas, layer

6a , Ventromedial hypothalamic nucleus , Supplemental somatosensory area, layer 6a , Orbital area, lateral part, layer 5 , Anterolateral visual

area, layer 6a , Superior colliculus, motor related, deep gray layer , Anterior cingulate area, dorsal part, layer 5 , Superior colliculus, motor re-

lated, intermediate white layer , Ventral posteromedial nucleus of the thalamus , Endopiriform nucleus, ventral part , Anterior cingulate area,

dorsal part, layer 6a , Primary somatosensory area, barrel field, layer 6a , Primary somatosensory area, upper limb, layer 6a , Endopiriform

nucleus, dorsal part , Midbrain reticular nucleus , Paraventricular nucleus of the thalamus , Intermediodorsal nucleus of the thalamus , dorsal

hippocampal commissure , Parataenial nucleus , Primary somatosensory area, barrel field, layer 6b , Dorsal nucleus raphe , Bed nuclei of the

stria terminalis , Primary visual area, layer 6b , Dentate gyrus, polymorph layer , Primary somatosensory area, trunk, layer 2/3 , Primary

somatosensory area, lower limb, layer 2/3 , Primary visual area, layer 6a , Medial septal nucleus , Basolateral amygdalar nucleus, ventral part

, anterior commissure, olfactory limb , Nucleus of Roller , Primary auditory area, layer 6b , Infralimbic area, layer 5 , Visceral area, layer

6b , Periventricular hypothalamic nucleus, anterior part , Ventral auditory area, layer 5 , Orbital area, medial part, layer 5 , Retrosplenial

area, dorsal part, layer 5 , Retrosplenial area, ventral part, layer 6a , posteromedial visual area, layer 5 , Primary motor area, Layer 5 ,

Red nucleus , Parvicellular reticular nucleus , Agranular insular area, dorsal part, layer 5 , Agranular insular area, dorsal part, layer 6a ,

Orbital area, lateral part, layer 2/3 , Retrosplenial area, dorsal part, layer 6a , Secondary motor area, layer 6a , Septohippocampal nucleus ,

Interanterodorsal nucleus of the thalamus , Tuberomammillary nucleus, dorsal part , Anterolateral visual area, layer 4 , Dorsal auditory area,
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layer 5 , Subthalamic nucleus , Nucleus of the brachium of the inferior colliculus , Primary somatosensory area, lower limb, layer 5 , Principal

sensory nucleus of the trigeminal , Spinal nucleus of the trigeminal, caudal part , Superior olivary complex, lateral part , Spinal nucleus of

the trigeminal, oral part , Interposed nucleus , Nucleus of the lateral olfactory tract, layer 3 , Superior olivary complex, periolivary region ,

Nucleus raphe obscurus , central canal, spinal cord/medulla , vomeronasal nerve , Posterior auditory area, layer 2/3 , Subparaventricular zone

, Accessory olfactory bulb, granular layer , Ventral auditory area, layer 4 , Anterior cingulate area, ventral part, 6a , Posterior amygdalar

nucleus , Posterolateral visual area, layer 2/3 , Claustrum , Primary somatosensory area, nose, layer 6a , Primary somatosensory area, barrel

field, layer 2/3 , Basomedial amygdalar nucleus , Agranular insular area, ventral part, layer 6a , Basolateral amygdalar nucleus, posterior

part , Central amygdalar nucleus , Basolateral amygdalar nucleus, anterior part , Superior colliculus, motor related, intermediate gray layer,

sublayer b , Agranular insular area, posterior part, layer 5 , Dorsal auditory area, layer 6a , Magnocellular reticular nucleus , Magnocellular

nucleus , Parasubthalamic nucleus , Primary somatosensory area, nose, layer 2/3 , Primary somatosensory area, mouth, layer 5 , Primary

somatosensory area, nose, layer 4 , medial lemniscus , arbor vitae , Spinal nucleus of the trigeminal, interpolar part , Gustatory areas, layer

5 , Supplemental somatosensory area, layer 4 , Primary somatosensory area, nose, layer 5 , Primary somatosensory area, barrel field, layer 5

, Supplemental somatosensory area, layer 5 , Primary somatosensory area, barrel field, layer 4 , Parabrachial nucleus , Main olfactory bulb ,

Nucleus accumbens , Substantia innominata , Agranular insular area, ventral part, layer 5 , Primary motor area, Layer 6a , Prelimbic area,

layer 5 , Nucleus y , Dentate nucleus , Anterolateral visual area, layer 5 , internal medullary lamina of the thalamus , Anterior cingulate

area, ventral part, layer 5 , Agranular insular area, dorsal part, layer 6b , Prelimbic area, layer 6b , Peripeduncular nucleus , vestibular nerve

, Laterodorsal tegmental nucleus , Sublaterodorsal nucleus , Interanteromedial nucleus of the thalamus , Posterodorsal preoptic nucleus ,

Nucleus incertus , Infralimbic area, layer 2/3 , Primary somatosensory area, trunk, layer 6b , Anterior cingulate area, dorsal part, layer 6b ,

Gustatory areas, layer 6b , Interstitial nucleus of Cajal , supramammillary decussation

Cluster 3

Anteromedial visual area, layer 1 , Primary somatosensory area, lower limb, layer 1 , Retrosplenial area, lateral agranular part, layer 1 ,

Posterolateral visual area, layer 1 , Anterolateral visual area, layer 1 , Lateral visual area, layer 1 , Primary visual area, layer 1 , posteromedial

visual area, layer 1 , Lateral dorsal nucleus of thalamus , Dorsal part of the lateral geniculate complex , Superior colliculus, superficial gray

layer , fiber tracts , Piriform-amygdalar area , Posterior auditory area, layer 1 , Ventral part of the lateral geniculate complex , Anteroventral

preoptic nucleus , Postpiriform transition area , Septofimbrial nucleus , Nucleus of the lateral olfactory tract, molecular layer , Agranular insular

area, ventral part, layer 1 , Periventricular hypothalamic nucleus, posterior part , Primary somatosensory area, nose, layer 1 , Supraoptic

nucleus , lateral olfactory tract, body , cerebal peduncle , Olfactory areas , Olfactory tubercle , Interfascicular nucleus raphe , fourth ventricle

, Lingula (I) , Orbital area, ventrolateral part, layer 1 , optic chiasm , Subfornical organ , Rostral linear nucleus raphe , posterior commissure ,

External cuneate nucleus , middle cerebellar peduncle , Tuberomammillary nucleus, ventral part , fasciculus retroflexus , Orbital area, medial

part, layer 1 , Anterior cingulate area, dorsal part, layer 1 , Retrosplenial area, ventral part, layer 1 , optic tract , Hippocampal formation ,

Dentate gyrus, molecular layer , gracile fascicle , motor root of the trigeminal nerve , Vascular organ of the lamina terminalis , ventricular

systems , Fasciola cinerea , Superior colliculus, motor related, intermediate gray layer, sublayer a , Prelimbic area, layer 1 , Frontal pole, layer

1 , Perirhinal area, layer 1 , Primary auditory area, layer 1 , Agranular insular area, posterior part, layer 1 , brachium of the inferior colliculus

, Dorsal auditory area, layer 1 , lateral recess , Primary somatosensory area, mouth, layer 1 , Supplemental somatosensory area, layer 1 ,

Medial pretectal area , Parapyramidal nucleus , Primary somatosensory area, upper limb, layer 1 , stria terminalis , Temporal association

areas, layer 1 , Ectorhinal area/Layer 1 , lateral ventricle , Primary motor area, Layer 1 , Ventral auditory area, layer 1 , Secondary motor

area, layer 1 , habenular commissure , Precommissural nucleus , trochlear nerve , ventral hippocampal commissure , Gustatory areas, layer

1 , Agranular insular area, dorsal part, layer 1 , Retrosplenial area, dorsal part, layer 1 , fimbria , Visceral area, layer 1 , Olivary pretectal

nucleus , pyramid , Ventrolateral preoptic nucleus , Orbital area, ventrolateral part, layer 6b , Nucleus of the posterior commissure , Temporal

association areas, layer 6b

Cluster 4

Orbital area, ventrolateral part, layer 6a , Globus pallidus, internal segment , corpus callosum , cingulum bundle , Periaqueductal gray ,

Agranular insular area, posterior part, layer 2/3 , Diagonal band nucleus , Frontal pole, layer 2/3 , external medullary lamina of the thalamus

, Superior colliculus, motor related, deep white layer , Orbital area, medial part, layer 2/3 , Orbital area, lateral part, layer 6a , Paracentral

nucleus , Perirhinal area, layer 6a , Primary motor area, Layer 6b , Central lobule , Median preoptic nucleus , Orbital area, ventrolateral part,

layer 2/3 , Orbital area, lateral part, layer 1 , Dorsal peduncular area , Orbital area, lateral part, layer 6b , anterior commissure, temporal

limb , Submedial nucleus of the thalamus , Accessory olfactory bulb, mitral layer , Accessory olfactory bulb, glomerular layer , Secondary

motor area, layer 6b , Anterior cingulate area, dorsal part, layer 2/3 , Nucleus of the lateral lemniscus , Folium-tuber vermis (VII) , Pontine

gray , Ventral premammillary nucleus , corticospinal tract , Paramedian lobule , Facial motor nucleus , Anteroventral periventricular nucleus

, Nucleus ambiguus, ventral division , Dorsal motor nucleus of the vagus nerve , Uvula (IX) , Declive (VI) , Substantia nigra, compact part

, Nucleus of the solitary tract , Flocculus , Gustatory areas, layer 4 , Primary somatosensory area, mouth, layer 4 , Ventral posterolateral

nucleus of the thalamus , Ventral medial nucleus of the thalamus , columns of the fornix , Posterior complex of the thalamus , Prelimbic area,

layer 2/3 , Anterior hypothalamic nucleus , Zona incerta , Substantia nigra, reticular part , Copula pyramidis , Ansiform lobule , Pallidum ,

Visceral area, layer 4 , Primary auditory area, layer 2/3 , Supplemental somatosensory area, layer 2/3 , Anterior olfactory nucleus , Nucleus

of the optic tract , Primary somatosensory area, nose, layer 6b , Parabigeminal nucleus , Medulla , Pons , Ventral cochlear nucleus , Medial

mammillary nucleus , Anterolateral visual area, layer 2/3 , Simple lobule , Anterior amygdalar area , Spinal vestibular nucleus , Ectorhinal

area/Layer 6b , Central medial nucleus of the thalamus , Midbrain trigeminal nucleus , Primary somatosensory area, lower limb, layer 6a ,

Pontine central gray , Retrosplenial area, dorsal part, layer 6b , Lateral visual area, layer 2/3 , Lateral septal nucleus, caudal (caudodorsal)

part , Supplemental somatosensory area, layer 6b , Intercalated amygdalar nucleus , Field CA1 , Medial preoptic area , Superior colliculus,

motor related, intermediate gray layer , Visceral area, layer 5 , internal capsule , Caudoputamen , Subiculum , Dorsomedial nucleus of the

hypothalamus , Anteromedial nucleus , Suprachiasmatic nucleus , Culmen , Periventricular hypothalamic nucleus, preoptic part , Basic cell

groups and regions , Superior colliculus, optic layer , Lateral septal nucleus, ventral part , amygdalar capsule , Ectorhinal area/Layer 6a ,

Posterior limiting nucleus of the thalamus , Ectorhinal area/Layer 5 , Field CA3 , Primary motor area, Layer 2/3 , Agranular insular area,

posterior part, layer 6a , posteromedial visual area, layer 6a , Bed nucleus of the accessory olfactory tract , Periventricular hypothalamic

nucleus, intermediate part , Primary visual area, layer 2/3 , Retrosplenial area, lateral agranular part, layer 2/3 , Ventral auditory area, layer

6a , Mediodorsal nucleus of thalamus , midbrain tract of the trigeminal nerve
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Cluster 5

Temporal association areas, layer 4 , Fundus of striatum , Rostrolateral area, layer 6b , alveus , Lateral septal nucleus, rostral (rostroventral)

part , Perirhinal area, layer 5 , Anteroventral nucleus of thalamus , Dorsal auditory area, layer 2/3 , Secondary motor area, layer 2/3 ,

Agranular insular area, ventral part, layer 2/3 , Ventral anterior-lateral complex of the thalamus , Lateral hypothalamic area , Posterior

hypothalamic nucleus , Cortical subplate , posteromedial visual area, layer 2/3 , Lateral preoptic area , Nucleus of reuniens , Gracile nucleus ,

Lateral terminal nucleus of the accessory optic tract , Bed nucleus of the anterior commissure , Primary somatosensory area, lower limb, layer

6b , Barrington’s nucleus , Induseum griseum , Anterior cingulate area, ventral part, layer 1 , Infralimbic area, layer 1 , Superior colliculus,

motor related, intermediate gray layer, sublayer c , Inferior salivatory nucleus , Intergeniculate leaflet of the lateral geniculate complex ,

Anterior cingulate area, ventral part, layer 2/3 , Medial habenula , Primary somatosensory area, upper limb, layer 6b , Perirhinal area, layer

6b , Lateral habenula , Ectorhinal area/Layer 2/3 , Perirhinal area, layer 2/3 , Parafascicular nucleus , Dentate gyrus, granule cell layer ,

Presubiculum , Thalamus , Taenia tecta , Entorhinal area, lateral part , Postsubiculum , dorsal fornix , posteromedial visual area, layer 6b

, Suprageniculate nucleus , Lateral posterior nucleus of the thalamus , Primary somatosensory area, trunk, layer 1 , Anterodorsal nucleus ,

stria medullaris , Primary somatosensory area, barrel field, layer 1 , Ventral auditory area, layer 2/3 , Temporal association areas, layer 2/3 ,

Parasolitary nucleus , Nodulus (X) , Dorsal cochlear nucleus , Inferior colliculus , Medial vestibular nucleus , mammillary peduncle , Gustatory

areas, layer 2/3 , Primary somatosensory area, mouth, layer 2/3 , Nucleus raphe pallidus , Ventral tegmental area , Agranular insular area,

dorsal part, layer 2/3 , Paragigantocellular reticular nucleus, lateral part , Cuneate nucleus , Hypothalamus , spinal tract of the trigeminal

nerve , Paraflocculus , Triangular nucleus of septum , Area postrema , rubrospinal tract , Midbrain , olfactory nerve layer of main olfactory

bulb , lateral lemniscus , Arcuate hypothalamic nucleus , Inferior olivary complex , Retrochiasmatic area , facial nerve , Interpeduncular

nucleus , trapezoid body , inferior cerebellar peduncle , Lateral mammillary nucleus , Dorsal auditory area, layer 6b , Rhomboid nucleus ,

cerebral aqueduct , Agranular insular area, posterior part, layer 6b , Ventral auditory area, layer 6b , Entorhinal area, medial part, ventral

zone , Medial amygdalar nucleus , Entorhinal area, medial part, dorsal zone , Piriform area , Striatum , cuneate fascicle , Retrosplenial

area, dorsal part, layer 2/3 , Medial geniculate complex , Lateral reticular nucleus , Pyramus (VIII) , Parasubiculum , Cortical amygdalar

area, anterior part , Visceral area, layer 2/3 , Reticular nucleus of the thalamus , Tuberal nucleus , Cortical amygdalar area, posterior part ,

Retrosplenial area, ventral part, layer 2/3 , third ventricle , Lateral amygdalar nucleus , Striatum-like amygdalar nuclei , mammillotegmental

tract
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