Trajectories
Determistic Trajectory with Euler's method
Simulates the deterministic trajectory of the cells using Euler's method: $$ \operatorname{state}(t + \Delta t) = \operatorname{state}(t) + {d \operatorname{state} \over dt} \Delta t. $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cells |
CellPopulation
|
CellPopulation. |
required |
time_range |
1D torch.Tensor
|
Time points at which the cells state should be evaluated. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor
|
torch.Tensor: Trajectory of shape (n_time_points, n_cells, n_genes, *state_dim) |
Determistic Trajectory with solver
Simulates the deterministic trajectory of the cells using the torchdiffeq
solver.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cells |
CellPopulation
|
CellPopulation. |
required |
time_range |
1D torch.Tensor
|
Time points at which the cells state should be evaluated. |
required |
method |
str
|
argument for the solver. |
'dopri5'
|
Returns:
Type | Description |
---|---|
torch.Tensor
|
torch.Tensor: Trajectory of shape (n_time_points, n_cells, n_genes, *state_dim) |
Stochastic Trajectory
Simulates stochastic trajectories of the cell using the tau-leaping method, which is a variation of the Gillespie algorithm: $$ \operatorname{state}(t + \Delta t) = \operatorname{state}(t) + \operatorname{Pois}[\Delta t \cdot (\operatorname{production rates})] - \operatorname{Pois}[\Delta t \cdot (\operatorname{decay rates})]. $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cells |
CellPopulation
|
CellPopulation. |
required |
time_range |
1D torch.Tensor
|
Time points at which the cells state should be evaluated. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Trajectory of shape (n_time_points, n_cells, n_genes, *state_dim) |