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Applications of deep learning in genomics.

» Lots of applications
of deep learning in
genomics

» Today focus on
applications to
transcriptomics
and its challenges

Figure taken from A primer on deep learning in genomics
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What are transcriptomics?

» The study of an organism's transcriptome, the sum of all of
its RNA transcripts

» We will focus on RNA-seq and single cell RNA-seq

Single-Cell Analysis » ’/ * — -
- P ¥

* * ’ % Reveals heterogeneity
Single-Cell input and subpopulation

H Each cell type has a distinct expression variability of
2 expression profile thousands of cells
-
Bulk Analysis
Bulk RNA input Average gene expression Cellular heterogeneity
from all cells masked

Figure taken from
https://www.biocompare.com/Bench-Tips/345311-Single-Cell-Set-Up-Sample-Preparation-Tips/
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Lots of different cell types

Mast Cell Basophil Neutrophil Eosinophil
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More and more data

10,000,000
llumina
Wumina HiSeq X Ten
Ilumina HiSeq 2500
1,000,000 Hi-Seq 2000
Complete (@) ABI SOLID
Genomics SS00AW  liurina
ABIsoLip_Intelligent 75  HiSeq 3000
Bic te
100,000 [30x human genome o III;r::K\a ® 55::“ ws.r
jumina
lllumina
S e ® e NextSeq 500
= ABI SOLID 3
= 10000 Helicos
=1 " Heliscope
2 100x human exome  ABI SOLID Polonalor | oront 11U on Toront
3 ) lonPGM  MiSeq  lon Proton
° Roche/454
2 GS FLX+
c 1,000 9 @
s Solexallumina Pacific Bioscience
E] sequence analyzer RSl
= O
100 Rocheldsd MinlON
454 GS-20 GS Junior
Ppyrosequencer
10
1
> $ $ S ® ® o N O o N -
$ § $ & S o N < K R &
AR S R

Figure: Plot of commercial release dates versus machine outputs per run
are shown. Numbers inside data points denote current read lengths.
Sequencing platforms are color coded.

Figure taken from High-Throughput Sequencing Technologies
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Apply modern machine learning techniques?

Long term goals:
» Individualized medicine

» Better understanding the biology

Today's objective
Identify and understand the challenges facing machine learning
(ML) and deep learning (DL) techniques when applied to
transcriptomics
Why should you care?

» Be aware of the limitations of usual ML

» Take those limitations into account when you use ML

» Discover fields of research in ML
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How can machine learning help?

Simplified Acquisition Loss of Imperfect Confounding
environment biases information fit effects

S amn) @) ) o

Drug
Tumor szﬁ:’:s sensitivity —> dr.uQ D UED
prediction givenigene
expression
: RNA . Machine Feature
[ Modelize ] [sequencing ] [Preprocessmg] [ Learning ] [ importance ]

» Example of a pipeline to find better cancer treatment using
Machine Learning

> Let us study the limitations associated with each step
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Outline

© From real world to input data
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Outline

© From real world to input data
@ Dataset biases
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Overview

Slmpllfled Acquisition Loss of Imperfect Confounding
environment biases information fit effects

P NP Py g -

Gene [ vl drug to use
Tumor | sensitivity —> .
1 Counts \Qredicﬁot;/ given gene
expression
— . RNA . Machine Feature
[ Modelize ] [sequencin ] [Preprocesslng] [ Learning ] [ importance ]
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Cell lines, a model for tumors

b
‘and vessol dlation

Cell lines are a simplified model
of tumors

» Tumor are complex tissues
» Composed of different cell

types
e e » Evolving in a living
oo organism

Figure taken from Biological Pathways Involved in Tumor Angiogenesis and Bevacizumab Based
Anti-Angiogenic Therapy with Special References to Ovarian Cancer
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Why is this an issue for ML?

Lab experiments ’ ‘ Patients
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A refresher on supervised learning

Supervised learning

» Learn to predict target Y given input X
» We model Py(x|y) and learn the parameters § based on pairs
of examples

» Questions: Are there any assumptions on the dataset?
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Let's have a quiz!

[\5‘ Replace any domain knowledge % Provide explanations for observed
R AL } _pa tterns

"
R

. Estimate functions from IID - ellably generallze to other
\_ “* samples Mmams
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Machine Learning cannot do everything!
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The main assumption of Supervised Learning

» Intuition: Pick balls at random from the same bag (and put
the ball back before picking another one)

Independent Identically Distributed

All samples are independently drawn from a fixed probability
distribution

» This assumption can be violated in several ways

— Training
- Test

Figure: Counterexample where train and test inputs have different
distributions
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Covariate shift

>
X

>
Y

>

Figure: X causes Y

Happens in X causes Y
problems

Covariate shift: P(x)
changes between train and
test but P(y|x) does not
change

At test time, the model will
be confronted with parts of
the input space that it has
not seen during training
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Covariate Shift
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Prior probability shift

» Happens in Y causes X
Y problems

» Prior probability shift:
P(y) changes between
train and test but P(x|y)
does not change

2 » Difficult because both the
input distribution P(x) and
Figure: Y causes X what we model (P(y|x))

change
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Concept shift

» Concept shift in X causes Y problems: P(x) does not change
but P(y|x) changes

» Concept shift in Y causes X problems: P(y) does not change
but P(x|y) changes
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Different shifts together?

\
)
/

What happens in transcriptomics?

X : .
Z In biology, there are most certainly
A (very) complicated relationships
between inputs and targets. Probably
Y lots of things change together
Y |

~ » Examples: covariate shift from
one individual to the other,
concept drift from one cell type
to the other.

Figure: Z causes X and Y in
addition to direct effects

» Quick (imperfect) fix: Normalize
data

» Warning: Normalizing also means
loosing information!
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Selection bias




Multiple studies




Towards multi-environment learning and meta-learning?

» Other learning procedures exist and can be adapted to
transcriptomics

» Multi-environment training: assume that data comes from
different environments

» Meta-learning: Learn to adapt fast to a new environment

The TCGA Meta-Dataset Clinical Benchmark

Mandana Samiei! Tobias Wiirfl> Tristan Deleu> Martin Weiss 3
Francis Dutil® Thomas Fevens' Geneviéve Boucher®* Sebastien Lemieux®*
Joseph Paul Cohen®
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Outline

© From real world to input data

@ Acquisition biases
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Overview

Simplified ACCIU isition Loss of Imperfect Confounding
environment biases information fit effects
Ve 5 5 5 VN What
( (. -rd drug to use
| Tumor ' sensitivity —> 249
Counts \prediction/ given gene
N— 7 expression
~ I RNA Machine Feature
[ Modelize ] [ sequencin, ] [ reprocesslng] [ Learning ] [ importance ]
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The acquisition process

a b

Allelic Dropout Rate (ADR) ¢
Pop Single cell Coverage depth (X) Coverage uniformity
A
A B ——
- _-_ _ -
———
False-Positive Rate (FPR) —_r
—_— Cell 1
Pop Single cell ——
Coverage breadth
< >
False-Negative Rate (FNR) - "
—_— Cell 3
Pop Single cell —
A A > xx — — — — h Cell 4

Figure 3 Technical errors and coverage in single-cell sequencing data. (a) Technical errors that occur in single-cell sequencing (SCS) data
include: false-positive errors, allelic dropout events and false-negative errors due to insufficient coverage. ‘Pop’ indicates a population of cells. (b)
Coverage metrics in SCS data include coverage depth and total physical coverage, or breadth. (c) Coverage uniformity, or ‘eveness’ in SCS data
can vary from cell to cell, but is often more uniform in standard genomic DNA sequencing experiments using populations of cells.

Figure taken from Cancer genomics: one cell at a time
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Dropout in single cell

Gene counts
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Denoising Autoencoder

» How to denoise the data?

Extracting and Composing Robust Features with Denoising

Autoencoders
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Hugo Larochelle LAROCHEHQIRO.UMONTREAL.CA
Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Pierre-Antoine Manzagol MANZAGOP@IRO.UMONTREAL.CA

Université de Montréal, Dept. IRO, CP 6128, Succ. Centre-Ville, Montral, Qubec, H3C 3J7, Canada
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Denoising Autoencoder
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Denoising Autoencoder
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ADAGE

Tan et al. BMC Bioinformatics (2017) 18:512
DOI 10.1186/512859-017-1905-4

BMC Bioinformatics

ADAGE signature analysis: differential @
expression analysis with data-defined
gene sets

Jie Tan', Matthew Huyck®®, Dongbo Hu?, René A. Zelaya?, Deborah A. Hogan® and Casey S. Greene?"
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Outline

© From real world to input data

@ Preprocessing
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Overview

Simplified Acquisition LOSS Of Imperfect Confounding
environment biases information fit effects
/ 5 5 5 5 P \ What
( (. -rd drug to use
| Tumor ' sensitivity —> 249
Cami \prediction/ given gene
N— 7 expression
~ I RNA Machine Feature
[ Modelize ] [ sequencin, ] [ reprocesslng] [ Learnling ] [ import:nce ]
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The acquisition process

a b

Allelic Dropout Rate (ADR) ¢
Pop Single cell Coverage depth (X) Coverage uniformity
A
A B ——
- _-_ _ -
———
False-Positive Rate (FPR) —_r
—_— Cell 1
Pop Single cell ——
Coverage breadth
< >
False-Negative Rate (FNR) - "
—_— Cell 3
Pop Single cell —
A A > xx — — — — h Cell 4

Figure 3 Technical errors and coverage in single-cell sequencing data. (a) Technical errors that occur in single-cell sequencing (SCS) data
include: false-positive errors, allelic dropout events and false-negative errors due to insufficient coverage. ‘Pop’ indicates a population of cells. (b)
Coverage metrics in SCS data include coverage depth and total physical coverage, or breadth. (c) Coverage uniformity, or ‘eveness’ in SCS data
can vary from cell to cell, but is often more uniform in standard genomic DNA sequencing experiments using populations of cells.

Figure taken from Cancer genomics: one cell at a time
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Different preprocessings

A key step

Preprocessing is a key step that determines what data will be fed
to our machine learning model. Each technique comes with
limitation and drawbacks

» Need to account for different total amounts of reads in the
different samples

» Need to account for the lengths of the genes

» Classic normalization methods: RPKM (Read Per Kilobase
Million), FPKM (Fragment Per Kilobase Million), TPM
(Transcripts Per Kilobase Million)

» Alignment: different reference genomes can be used from
one dataset to the other!
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Tremendous information loss!

Towards a more clever preprocessing?

A lot of information is lost during those preprocessing steps,
limiting what can be achieved downstream. Moreover, the non
standardized normalization and alignment limit our ability to
transfer knowledge from one dataset to the other.

» Could we do better?
» Example: RNA velocity inference using splicing information.
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RNA velocity

a Gene structure b
SMART-seq2 Transcription ¢ a
B ;.......... —  Spliced Unspliced
& —_ reads 22% mRNA u
2
o —— Unspliced  inDrop Splici
g icin =
e - reads Sl'pd g¢ﬂ_1
plice
()
L . 7% mANA~ TR 5
o —— N— —  Spliced .
§ ! — __ molecules Chromium Degradation ¢V
8 e/
< ® —  — Unspliced ~7laq
3 — molecules 23%
* R — ds
9 u-ys

you can visit https://scvelo.org

Figure taken from RNA velocity of single cells
39/108


https://scvelo.org

RNA velocity

a *® o Radialglia . e,
® © Neuroblast

® © Immature neuron ®
® ® Neuron

Figure taken from RNA velocity of single cells
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Outline

e The supervised learning pipeline
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Overview

Simplified Acquisition Loss of |mpe|'feCt Confounding
environment biases information flt effects

y. 29N What
[ (. -8 drug to use
| Tumor ' sensitivity —> 249
Gt \prediction/ given gene
T 7 expression
~__ ) RNA Machine Feature
[ Modelize ] [ sequencin ] [ reprocesslng] [ Learning ] [ importance ]
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Outline

e The supervised learning pipeline
@ The curse of dimensionality
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Fat data

Number of features

Figure: When data has lots of feature but few examples, data is called fat

Number of examples
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Fat data: Beware of spurious correlations!

Number of features

V' 4
\ - | I
€
. 2
‘ .
@ @ » Spurious correlations: with fat data,

features can be highly correlated
together out of chancel!

» Example: binary, independent features
and 2 samples. Some features will have
a correlation of 1 out of chancel!

Conclusion

In high dimension, you need lots of
examples!
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Estimate a function of 1 variable

» We want a high density of

o samples (distance between
two sample points < %) in
/\ order to estimate the
TN / function reliably
» N samples to estimate the

x function on [0, 1]
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Estimate a function of 2 variables

0y) » To have the same density
of sample in 2 dimensions
we need N2 samples

S " o . .
. L L] » In dimension 3, we need

7
N3 samples...

Ny 78
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And with 20,000 dimensions?

GO gle calculator 4§ Q

Q Al O shopping [ Books @ News [ Images : More Settings  Tools

About 1,870,000,000 results (0.45 seconds)

o) 2o -
Infinity
Rad | Deg x! ( ) % AC
Inv sin In 7 8 9 +
™ cos log 4 5 6 X
e tan N 1 2 3 -
Ans EXP x/ 0 . - +
More info
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Volumes in high dimension

Cover the space in d dimensions

The volume of a hypercube [0, a] x [0, a] x ... x [0, a] of dimension
dis:

ad

In high dimension, volumes are very big!
» This is why kNN does not work in high dimension

» How to estimate a function in dimension 20k?

» Machine learning is about making the right assumptions
to overcome the need for many samples.
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Outline

e The supervised learning pipeline

@ Making the right assumptions: inspiration from Comp. Vis.
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Automatic feature extraction

Low-Level
—

Feature

Pl

Mid-Level
Feature

= High-Level|

Feature

Trainable
Classifier

Figure by Y. LeCun
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Comparison with logisitic regression

—> P(y=0]x)
—_—
hyp(x)

+1 Layer Ly

+1

Input Logistic
(features) classifier Layer L, Layer L,

Logistic Regression Neural Network

» 1 hidden layer NN: the features fed to the logistic regression
are learnt
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Going deeper!




Going deeper!
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Going deeper!

34-layer residual

» Example: Resnet, a 34 layer network!
» Needs additional trick (residuals) for forward and backward
signals to pass through
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The bias variance trade-off

1\ i h
X5 \ Xo . Xz
‘\ o O/’ i
. -
d\ + 0, + 9 *
o \+ o| + gl +
xF o .\ T N
+ \ +'7 ~+ 'b'l' +
o d > o - 5 ""'b.\ N
Underfitting %1 Good X1 Overfitting %1
(high bias) compromise (high variance)

» High model complexity: high variance low bias
» Low model complexity: low variance high bias

» You have to choose the right model complexity!
(regularization, model depth,...)
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The bias variance trade-off

Error

Total Error

Variance

Optimal Model Complexity

L 4

Model Complexity
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Why does ML work so well in Computer Vision?

Why does ML work so well in Computer Vision?

People have made made simplifying assumptions that hold well in
Computer Vision

» Let us dive into the details of CNNs
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Fully connected

» X, and X activations
vectors in layers L and
L+1

> XL+1 = O'(WLX[_ + B)

Figure: matrix W,
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Fully connected
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Convolutional layer

> X1 =o(W XL+ B)
> parameter sharing : C ) C
constraints on W, < ) ( )

Figure: matrix W, with constraints
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Convolutional layer
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Equivariance

image 1 image 2

P(face) 1 P(face) 2
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Equivariance
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Equivariance
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Outline

e The supervised learning pipeline

@ Which assumptions for transcriptomics?
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What are the right assumptions for gene expression data?

» We would like to add prior knowledge and/or make
biologically grounded assumptions

What are the right assumptions for gene expression data?

» Use gene interaction graphs?

» Assume similarity of processes between genes?

» Assume similar perturbation response between
individuals/species?
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Outline

e The supervised learning pipeline

@ Gene interaction graphs?
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Incorporate Graph Prior Knowledge?

@'"“ Q‘“““’ @’“* e

2

SEf

[ )
gree TGre2 ﬁ ~ p-LcousiTg
o~ g~ @ o~ 8

Evidence key: — Homology — Coexpression
— Experiments ~ — Databases

Figure: Example of a curated graph: StringDB
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Incorporate Graph Prior Knowledge?

l?

+

S Better
+: Model ~ Predictions

» ldea: Use gene interaction graphs to constrain a ML model
» 2 questions:

» How to use the graph in a machine Learning model?
» Are curated graphs well suited for gene expression data?
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Adjacency matrix of a graph

.

DO O
= oo
=i =l
| i B R e I e |
L Bl e B

» We can represent an undirected graph by its adjacency matrix

» Adjacency matrix: the value at coordinates (/,) is 1 if
nodes / and j are connected, O otherwise
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Constraining the model: a simple example

+ B)

- 00000

B3
>

o X X X X
[
Q
>

Constraints T
0
1
1
0
0

» This is one simple example

OO
OO
~omoOo

o~oroO
N~————

» Deep learning with graphs is a dynamic field of research!

72/108



It does not seem to work!

» Curated graphs do not seem to be well suited for gene
expression data when using all genes

Analysis of Gene Interaction Graphs as Prior
Knowledge for Machine Learning Models

Paul Bertin Mohammad Hashir Martin Weiss
Mila, Université de Montréal ~ Mila, Université de Montréal ~ Mila, Université de Montréal
Montréal, Canada Montréal, Canada Montréal, Canada
Vincent Frappier Theodore J. Perkins
Mila, Université de Montréal Ottawa Hospital Research Institute
Montréal, Canada University of Ottawa

Ottawa, Canada

Geneviéve Boucher Joseph Paul Cohen
Institute for Research in Immunology and Cancer Mila, Université de Montréal
Université de Montréal Montréal, Canada

Montréal, Canada
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A current debate

Graph biased feature selection of genes is better than random for
many genes

Jake Crawford *f Casey S. Greene T+

» A current debate: What if you choose the right genes?

What's next?

Could there be an interplay between graph curation and ML model
performance?

» ldentify genes that hurt performance
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Outline

e The supervised learning pipeline

@ Parameter sharing among genes?
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Parameter sharing among genes?

Low dimensional state of the cell

Gene expressions are far from being independent, the data has a
lot of structure.

» Idea: Use Representation Learning with low dimensional
latent spaces (e.g. dim ~ 500)
» We can perform analysis in the lower dimensional latent space
(e.g. fit a prediction model)
» But we still need a matrix of shape (20k, 500): lots of
parameters!
» Lots of things (regulatory processes, effects) might be similar

among genes
» We can share parameters among genes — Diet Networks
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Diet Networks

Published as a conference paper at ICLR 2017

DIET NETWORKS: THIN PARAMETERS FOR

FAT GENOMICS

Adriana Romero; Pierre Luc Carrier;

Akram Erraqabi, Tristan Sylvain,

Alex Auvolat, Etienne Dejoie

Montreal Institute for Learning Algorithms
Montreal, Quebec, Canada
firstName.lastName @umontreal.ca, except

Marc-André Legault!, Marie-Pierre Dubé!23
1University of Montreal, Faculty of Medicine
2Montreal Heart Institute,

3Beaulieu-Saucier Pharmacogenomics Centre
Montreal, Quebec, Canada
marc-andre.legault.l@umontreal.ca

adriana.romero.soriano@umontreal.ca marie-pierre.dube@umontreal.ca
and pierre-luc.carrier@umontreal.ca

Julie G. Hussin

Wellcome Trust Centre for Human Genetics
University of Oxford

Oxford, UK

julieh@well.ox.ac.uk

Yoshua Bengio

Montreal Institute for Learning Algorithms
Montreal, Quebec, Canada
yoshua.umontreal@gmail.com
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Diet Networks: Magic trick!

Number of examples

—
@ Number of features G z
2 5
e g
g <
2> S
s g
5 €
8 s
5 g
| @
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Diet Networks

' X We -
|
MLP | MLP
P W
R |
MLP Emb. Emb.

X X' XT
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Diet Networks

le[@lecee
>
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Diet Networks

> Not yet applied successfully to gene expression data!

» The features that are fed to the auxiliary networks have to
contain the relevant information about the task you want
to solve!

Open question
What features to use for gene expression data?
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Outline

e The supervised learning pipeline

@ Similar response to perturbation in latent space?
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Response to perturbation

nature ‘ m et hOd s hnps://doi.org/10.1OSAE/EI-Sl;ZI-(S)-It;Ei

scGen predicts single-cell perturbation responses

Mohammad Lotfollahi ©'2, F. Alexander Wolf ©'™ and Fabian J. Theis ©"23*
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Response to perturbation

Celltypes  Condition

Unperturbed
©© Gelis (P=0)

Perturbed

AT Cels(P=1)

L
«—
-
“lg

+LPS
Sips

o
&
el o
¢

Predict response
to LPS in rat

ﬁ% ®
AdA
: Encode )
Gore E Pl o °
expressmn .)Q
Decode

Estimate perturbation Apply 5

» Observations: arithmetic in
latent space seem to make
sense (e.g. Word2Vec)

» Assumption: response to
perturbation is the same in
latent space across species/cell

types

84/108



Outline

@ Model interpretability
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Overview

Simplified Acquisition Loss of Imperfect Confou ndlng
environment biases information fit effects

PSP P PRy gy

[ ( \
| Tumor e ( sensitiity |—>{ drug to use
Counts \predictiory /) given gene
N expression
~__ ) RNA . Machine Feature
[ Modelize ] [ sequencin ] [Preprocesslng] [ Learning ] [ importance ]
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Want to get some explanations from the model?

How to better understand what is happening?

How to know what the model is looking at? Let us investigate
feature importance techniques and their limitations
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Outline

@ Model interpretability
@ Feature importance for deep models
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Saliency Maps

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman
Visual Geometry Group, University of Oxford
{karen,vedaldi, az}@robots.ox.ac.uk
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Saliency Maps

Gradients across RGB channels

Input image Max gradients Overlay

Gradients across RGB channels Max gradients Overlay

Input image

Gradients across RGB channels Max gradients Overlay

Figure taken from
https://mc.ai/feature-visualisation-in-pytorch%E2%80%8A-E2%80%8Asaliency-maps/

90/108


https://mc.ai/feature-visualisation-in-pytorch%E2%80%8A-%E2%80%8Asaliency-maps/

Parametric models

Neural
Network

\

0.6

0.3

NIN(

0.2

-0.7

Input

Output

parameters

W) =

N\

P(owl)

P (peacock)
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Usual training

How is a model usually trained?

> lterate: P(owl)
» Compute the error for a given E( ’ Iabel)

input
» Compute the gradient of the
error w.r.t each parameter %

using backpropagation

» \is called the

» Update the parameters in order learning rate
to lower the error: » In practice we use
t+1 t oE ;
W, =W — A several inputs at
ow;

once (in a batch)

> Other gradient

d t algorith
This is called Stochastic Gradient escent algonthms

exist (e.g. Adam)
Descent
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Back to the computation graph

1

1 + e—(wozotwizy+ws)

Backpropagation

Figure by J. P. Cohen
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Back to the computation graph

1

1 + e—(wozotwizy+ws)

Backpropagation

Figure by J. P. Cohen
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Saliency Maps

» For a given class probability, e.g.

OP(owl) ] .

ax, P(owl), compute the gradient with

E)P(owl)

P (owl) respect to the input

9X, » We get a real number for each input
5P (owl) feature

0Xs :

Interpretation

9P (owl

) 0P(ow).

X, ~x . how much the class probability
9P(owl) P(owl) depends on feature x;

0X5
OP(owl)

09X,
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Deep Dream

Inceptionism: Going Deeper into Neural Networks
Wednesday, June 17,2015

Posted by Alexander Mordvintsev, Software Engineer, Christopher Olah, Software Engineering Intern and
Mike Tyka, Software Engineer

Make the model dream the input that would maximize a given
class probability

» Gradient ascent in the input space to maximize a given class
probability
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Deep Dream: Gradient Ascent in the input space

» Update the input by iterating:

Xyz Xz 0};(;:’”
X,s —_— X3 ag()o(fl)
iy & =
X' X, a};()()(fl)
X', X a’;g"(f”
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Deep Dream

» The input image has been updated in order to maximize the
probability of the dog class
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At the end of the lecture

Figure: You will learn how to dream 3s from other numbers!

Visit the following notebook: Google colab
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https://colab.research.google.com/drive/1LBoQTJ3ydOzW4c9mTsZTxtz-Q9rgM6Ub

Limitations of feature importance methods

Limitations of feature importance methods

» Feature importance methods can be very noisy and difficult to
interpret for gene expression data.

» Feature importance does not provide a causal
explanation as the prediction can be confounded.
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Outline

@ Model interpretability

@ Simpson's paradox
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Simpson’s paradox

Treatment A Treatment B
Group 1 Group 2
Small Stones _
93% (81/87) | 87% (234/270)
Group 3 Group 4
Large Stones _
73% (192/263) | 69% (55/80)

Both 78% (273/350) | 83% (289/350)

» Two treatments for kidney stones

» Which one is better?

Stone
size

/N

Treatment—— > Outcome

Figure: The size of kidney
stones has an effect on
both treatment assignment
and outcome

Figure taken from https://en.wikipedia.org/wiki/Simpson%27s_paradox
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Simpson's paradox: an example from regression

® ages 5-10
® ages 50-55

basketball
sSuUCCess

height

Figure: If we do not take age into account, we may conclude that height
has a negative influence on basketball performance!
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How to understand the mechanisms of the cell?

Transcr.
Factor

» Would you like to identify
the effect of a gene on
another gene?

» Lots of confounders

» Current area of research
(module networks...)

Figure taken from https://clincancerres.aacrjournals.org/content/21/22/5047
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Simpson's paradox: Take-away

Take-away

If you are provided with data that contains several partitions!, you
may want to fit a model on a whole data as well as separate
models for each partition.

» You can analyse the story told by feature importance
techniques applied to the different models.

» If all models agree, you have an interpretation that is robust
across partitions (but no guarantee that the story is true...)

» If not, you may want to investigate further (lab experiments?)

In transcriptomics, there are lot of unobserved confounders!
(e.g. non coding parts of the genome)

le.g. cell lines, cell types, expression level of important Transcr. Factors
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Conclusion

Conclusion

» We investigated several challenges of Machine Learning when
it is applied to transcriptomic data.

» We need to design models making the right assumptions
for gene expression data!
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Practice time!

Visit the following notebook: Google colab
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https://colab.research.google.com/drive/1LBoQTJ3ydOzW4c9mTsZTxtz-Q9rgM6Ub
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